mirror of
				https://github.com/microsoft/autogen.git
				synced 2025-11-04 03:39:52 +00:00 
			
		
		
		
	Groq Client (#3003)
* Groq Client Class - main class and setup, except tests * Change pricing per K, added tests * Streaming support, including with tool calling * Used Groq retries instead of loop, thanks Gal-Gilor! * Fixed bug when using logging. --------- Co-authored-by: Qingyun Wu <qingyun0327@gmail.com>
This commit is contained in:
		
							parent
							
								
									55cc542bcf
								
							
						
					
					
						commit
						23c1dec206
					
				
							
								
								
									
										40
									
								
								.github/workflows/contrib-tests.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										40
									
								
								.github/workflows/contrib-tests.yml
									
									
									
									
										vendored
									
									
								
							@ -598,3 +598,43 @@ jobs:
 | 
				
			|||||||
        with:
 | 
					        with:
 | 
				
			||||||
          file: ./coverage.xml
 | 
					          file: ./coverage.xml
 | 
				
			||||||
          flags: unittests
 | 
					          flags: unittests
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  GroqTest:
 | 
				
			||||||
 | 
					    runs-on: ${{ matrix.os }}
 | 
				
			||||||
 | 
					    strategy:
 | 
				
			||||||
 | 
					      fail-fast: false
 | 
				
			||||||
 | 
					      matrix:
 | 
				
			||||||
 | 
					        os: [ubuntu-latest, macos-latest, windows-2019]
 | 
				
			||||||
 | 
					        python-version: ["3.9", "3.10", "3.11", "3.12"]
 | 
				
			||||||
 | 
					        exclude:
 | 
				
			||||||
 | 
					          - os: macos-latest
 | 
				
			||||||
 | 
					            python-version: "3.9"
 | 
				
			||||||
 | 
					    steps:
 | 
				
			||||||
 | 
					      - uses: actions/checkout@v4
 | 
				
			||||||
 | 
					        with:
 | 
				
			||||||
 | 
					          lfs: true
 | 
				
			||||||
 | 
					      - name: Set up Python ${{ matrix.python-version }}
 | 
				
			||||||
 | 
					        uses: actions/setup-python@v5
 | 
				
			||||||
 | 
					        with:
 | 
				
			||||||
 | 
					          python-version: ${{ matrix.python-version }}
 | 
				
			||||||
 | 
					      - name: Install packages and dependencies for all tests
 | 
				
			||||||
 | 
					        run: |
 | 
				
			||||||
 | 
					          python -m pip install --upgrade pip wheel
 | 
				
			||||||
 | 
					          pip install pytest-cov>=5
 | 
				
			||||||
 | 
					      - name: Install packages and dependencies for Groq
 | 
				
			||||||
 | 
					        run: |
 | 
				
			||||||
 | 
					          pip install -e .[groq,test]
 | 
				
			||||||
 | 
					      - name: Set AUTOGEN_USE_DOCKER based on OS
 | 
				
			||||||
 | 
					        shell: bash
 | 
				
			||||||
 | 
					        run: |
 | 
				
			||||||
 | 
					          if [[ ${{ matrix.os }} != ubuntu-latest ]]; then
 | 
				
			||||||
 | 
					            echo "AUTOGEN_USE_DOCKER=False" >> $GITHUB_ENV
 | 
				
			||||||
 | 
					          fi
 | 
				
			||||||
 | 
					      - name: Coverage
 | 
				
			||||||
 | 
					        run: |
 | 
				
			||||||
 | 
					          pytest test/oai/test_groq.py --skip-openai
 | 
				
			||||||
 | 
					      - name: Upload coverage to Codecov
 | 
				
			||||||
 | 
					        uses: codecov/codecov-action@v3
 | 
				
			||||||
 | 
					        with:
 | 
				
			||||||
 | 
					          file: ./coverage.xml
 | 
				
			||||||
 | 
					          flags: unittests
 | 
				
			||||||
 | 
				
			|||||||
@ -19,6 +19,7 @@ if TYPE_CHECKING:
 | 
				
			|||||||
    from autogen import Agent, ConversableAgent, OpenAIWrapper
 | 
					    from autogen import Agent, ConversableAgent, OpenAIWrapper
 | 
				
			||||||
    from autogen.oai.anthropic import AnthropicClient
 | 
					    from autogen.oai.anthropic import AnthropicClient
 | 
				
			||||||
    from autogen.oai.gemini import GeminiClient
 | 
					    from autogen.oai.gemini import GeminiClient
 | 
				
			||||||
 | 
					    from autogen.oai.groq import GroqClient
 | 
				
			||||||
    from autogen.oai.mistral import MistralAIClient
 | 
					    from autogen.oai.mistral import MistralAIClient
 | 
				
			||||||
    from autogen.oai.together import TogetherClient
 | 
					    from autogen.oai.together import TogetherClient
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -204,7 +205,7 @@ class FileLogger(BaseLogger):
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    def log_new_client(
 | 
					    def log_new_client(
 | 
				
			||||||
        self,
 | 
					        self,
 | 
				
			||||||
        client: AzureOpenAI | OpenAI | GeminiClient | AnthropicClient | MistralAIClient | TogetherClient,
 | 
					        client: AzureOpenAI | OpenAI | GeminiClient | AnthropicClient | MistralAIClient | TogetherClient | GroqClient,
 | 
				
			||||||
        wrapper: OpenAIWrapper,
 | 
					        wrapper: OpenAIWrapper,
 | 
				
			||||||
        init_args: Dict[str, Any],
 | 
					        init_args: Dict[str, Any],
 | 
				
			||||||
    ) -> None:
 | 
					    ) -> None:
 | 
				
			||||||
 | 
				
			|||||||
@ -20,6 +20,7 @@ if TYPE_CHECKING:
 | 
				
			|||||||
    from autogen import Agent, ConversableAgent, OpenAIWrapper
 | 
					    from autogen import Agent, ConversableAgent, OpenAIWrapper
 | 
				
			||||||
    from autogen.oai.anthropic import AnthropicClient
 | 
					    from autogen.oai.anthropic import AnthropicClient
 | 
				
			||||||
    from autogen.oai.gemini import GeminiClient
 | 
					    from autogen.oai.gemini import GeminiClient
 | 
				
			||||||
 | 
					    from autogen.oai.groq import GroqClient
 | 
				
			||||||
    from autogen.oai.mistral import MistralAIClient
 | 
					    from autogen.oai.mistral import MistralAIClient
 | 
				
			||||||
    from autogen.oai.together import TogetherClient
 | 
					    from autogen.oai.together import TogetherClient
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -391,7 +392,7 @@ class SqliteLogger(BaseLogger):
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    def log_new_client(
 | 
					    def log_new_client(
 | 
				
			||||||
        self,
 | 
					        self,
 | 
				
			||||||
        client: Union[AzureOpenAI, OpenAI, GeminiClient, AnthropicClient, MistralAIClient, TogetherClient],
 | 
					        client: Union[AzureOpenAI, OpenAI, GeminiClient, AnthropicClient, MistralAIClient, TogetherClient, GroqClient],
 | 
				
			||||||
        wrapper: OpenAIWrapper,
 | 
					        wrapper: OpenAIWrapper,
 | 
				
			||||||
        init_args: Dict[str, Any],
 | 
					        init_args: Dict[str, Any],
 | 
				
			||||||
    ) -> None:
 | 
					    ) -> None:
 | 
				
			||||||
 | 
				
			|||||||
@ -70,6 +70,13 @@ try:
 | 
				
			|||||||
except ImportError as e:
 | 
					except ImportError as e:
 | 
				
			||||||
    together_import_exception = e
 | 
					    together_import_exception = e
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					try:
 | 
				
			||||||
 | 
					    from autogen.oai.groq import GroqClient
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    groq_import_exception: Optional[ImportError] = None
 | 
				
			||||||
 | 
					except ImportError as e:
 | 
				
			||||||
 | 
					    groq_import_exception = e
 | 
				
			||||||
 | 
					
 | 
				
			||||||
logger = logging.getLogger(__name__)
 | 
					logger = logging.getLogger(__name__)
 | 
				
			||||||
if not logger.handlers:
 | 
					if not logger.handlers:
 | 
				
			||||||
    # Add the console handler.
 | 
					    # Add the console handler.
 | 
				
			||||||
@ -483,7 +490,13 @@ class OpenAIWrapper:
 | 
				
			|||||||
            elif api_type is not None and api_type.startswith("together"):
 | 
					            elif api_type is not None and api_type.startswith("together"):
 | 
				
			||||||
                if together_import_exception:
 | 
					                if together_import_exception:
 | 
				
			||||||
                    raise ImportError("Please install `together` to use the Together.AI API.")
 | 
					                    raise ImportError("Please install `together` to use the Together.AI API.")
 | 
				
			||||||
                self._clients.append(TogetherClient(**config))
 | 
					                client = TogetherClient(**openai_config)
 | 
				
			||||||
 | 
					                self._clients.append(client)
 | 
				
			||||||
 | 
					            elif api_type is not None and api_type.startswith("groq"):
 | 
				
			||||||
 | 
					                if groq_import_exception:
 | 
				
			||||||
 | 
					                    raise ImportError("Please install `groq` to use the Groq API.")
 | 
				
			||||||
 | 
					                client = GroqClient(**openai_config)
 | 
				
			||||||
 | 
					                self._clients.append(client)
 | 
				
			||||||
            else:
 | 
					            else:
 | 
				
			||||||
                client = OpenAI(**openai_config)
 | 
					                client = OpenAI(**openai_config)
 | 
				
			||||||
                self._clients.append(OpenAIClient(client))
 | 
					                self._clients.append(OpenAIClient(client))
 | 
				
			||||||
 | 
				
			|||||||
							
								
								
									
										289
									
								
								autogen/oai/groq.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										289
									
								
								autogen/oai/groq.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,289 @@
 | 
				
			|||||||
 | 
					"""Create an OpenAI-compatible client using Groq's API.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Example:
 | 
				
			||||||
 | 
					    llm_config={
 | 
				
			||||||
 | 
					        "config_list": [{
 | 
				
			||||||
 | 
					            "api_type": "groq",
 | 
				
			||||||
 | 
					            "model": "mixtral-8x7b-32768",
 | 
				
			||||||
 | 
					            "api_key": os.environ.get("GROQ_API_KEY")
 | 
				
			||||||
 | 
					            }
 | 
				
			||||||
 | 
					    ]}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    agent = autogen.AssistantAgent("my_agent", llm_config=llm_config)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Install Groq's python library using: pip install --upgrade groq
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Resources:
 | 
				
			||||||
 | 
					- https://console.groq.com/docs/quickstart
 | 
				
			||||||
 | 
					"""
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from __future__ import annotations
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import copy
 | 
				
			||||||
 | 
					import os
 | 
				
			||||||
 | 
					import time
 | 
				
			||||||
 | 
					import warnings
 | 
				
			||||||
 | 
					from typing import Any, Dict, List
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from groq import Groq, Stream
 | 
				
			||||||
 | 
					from openai.types.chat import ChatCompletion, ChatCompletionMessageToolCall
 | 
				
			||||||
 | 
					from openai.types.chat.chat_completion import ChatCompletionMessage, Choice
 | 
				
			||||||
 | 
					from openai.types.completion_usage import CompletionUsage
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from autogen.oai.client_utils import should_hide_tools, validate_parameter
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Cost per thousand tokens - Input / Output (NOTE: Convert $/Million to $/K)
 | 
				
			||||||
 | 
					GROQ_PRICING_1K = {
 | 
				
			||||||
 | 
					    "llama3-70b-8192": (0.00059, 0.00079),
 | 
				
			||||||
 | 
					    "mixtral-8x7b-32768": (0.00024, 0.00024),
 | 
				
			||||||
 | 
					    "llama3-8b-8192": (0.00005, 0.00008),
 | 
				
			||||||
 | 
					    "gemma-7b-it": (0.00007, 0.00007),
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class GroqClient:
 | 
				
			||||||
 | 
					    """Client for Groq's API."""
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def __init__(self, **kwargs):
 | 
				
			||||||
 | 
					        """Requires api_key or environment variable to be set
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        Args:
 | 
				
			||||||
 | 
					            api_key (str): The API key for using Groq (or environment variable GROQ_API_KEY needs to be set)
 | 
				
			||||||
 | 
					        """
 | 
				
			||||||
 | 
					        # Ensure we have the api_key upon instantiation
 | 
				
			||||||
 | 
					        self.api_key = kwargs.get("api_key", None)
 | 
				
			||||||
 | 
					        if not self.api_key:
 | 
				
			||||||
 | 
					            self.api_key = os.getenv("GROQ_API_KEY")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        assert (
 | 
				
			||||||
 | 
					            self.api_key
 | 
				
			||||||
 | 
					        ), "Please include the api_key in your config list entry for Groq or set the GROQ_API_KEY env variable."
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def message_retrieval(self, response) -> List:
 | 
				
			||||||
 | 
					        """
 | 
				
			||||||
 | 
					        Retrieve and return a list of strings or a list of Choice.Message from the response.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        NOTE: if a list of Choice.Message is returned, it currently needs to contain the fields of OpenAI's ChatCompletion Message object,
 | 
				
			||||||
 | 
					        since that is expected for function or tool calling in the rest of the codebase at the moment, unless a custom agent is being used.
 | 
				
			||||||
 | 
					        """
 | 
				
			||||||
 | 
					        return [choice.message for choice in response.choices]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def cost(self, response) -> float:
 | 
				
			||||||
 | 
					        return response.cost
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    @staticmethod
 | 
				
			||||||
 | 
					    def get_usage(response) -> Dict:
 | 
				
			||||||
 | 
					        """Return usage summary of the response using RESPONSE_USAGE_KEYS."""
 | 
				
			||||||
 | 
					        # ...  # pragma: no cover
 | 
				
			||||||
 | 
					        return {
 | 
				
			||||||
 | 
					            "prompt_tokens": response.usage.prompt_tokens,
 | 
				
			||||||
 | 
					            "completion_tokens": response.usage.completion_tokens,
 | 
				
			||||||
 | 
					            "total_tokens": response.usage.total_tokens,
 | 
				
			||||||
 | 
					            "cost": response.cost,
 | 
				
			||||||
 | 
					            "model": response.model,
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def parse_params(self, params: Dict[str, Any]) -> Dict[str, Any]:
 | 
				
			||||||
 | 
					        """Loads the parameters for Groq API from the passed in parameters and returns a validated set. Checks types, ranges, and sets defaults"""
 | 
				
			||||||
 | 
					        groq_params = {}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # Check that we have what we need to use Groq's API
 | 
				
			||||||
 | 
					        # We won't enforce the available models as they are likely to change
 | 
				
			||||||
 | 
					        groq_params["model"] = params.get("model", None)
 | 
				
			||||||
 | 
					        assert groq_params[
 | 
				
			||||||
 | 
					            "model"
 | 
				
			||||||
 | 
					        ], "Please specify the 'model' in your config list entry to nominate the Groq model to use."
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # Validate allowed Groq parameters
 | 
				
			||||||
 | 
					        # https://console.groq.com/docs/api-reference#chat
 | 
				
			||||||
 | 
					        groq_params["frequency_penalty"] = validate_parameter(
 | 
				
			||||||
 | 
					            params, "frequency_penalty", (int, float), True, None, (-2, 2), None
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					        groq_params["max_tokens"] = validate_parameter(params, "max_tokens", int, True, None, (0, None), None)
 | 
				
			||||||
 | 
					        groq_params["presence_penalty"] = validate_parameter(
 | 
				
			||||||
 | 
					            params, "presence_penalty", (int, float), True, None, (-2, 2), None
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					        groq_params["seed"] = validate_parameter(params, "seed", int, True, None, None, None)
 | 
				
			||||||
 | 
					        groq_params["stream"] = validate_parameter(params, "stream", bool, True, False, None, None)
 | 
				
			||||||
 | 
					        groq_params["temperature"] = validate_parameter(params, "temperature", (int, float), True, 1, (0, 2), None)
 | 
				
			||||||
 | 
					        groq_params["top_p"] = validate_parameter(params, "top_p", (int, float), True, None, None, None)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # Groq parameters not supported by their models yet, ignoring
 | 
				
			||||||
 | 
					        # logit_bias, logprobs, top_logprobs
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # Groq parameters we are ignoring:
 | 
				
			||||||
 | 
					        # n (must be 1), response_format (to enforce JSON but needs prompting as well), user,
 | 
				
			||||||
 | 
					        # parallel_tool_calls (defaults to True), stop
 | 
				
			||||||
 | 
					        # function_call (deprecated), functions (deprecated)
 | 
				
			||||||
 | 
					        # tool_choice (none if no tools, auto if there are tools)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        return groq_params
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def create(self, params: Dict) -> ChatCompletion:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        messages = params.get("messages", [])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # Convert AutoGen messages to Groq messages
 | 
				
			||||||
 | 
					        groq_messages = oai_messages_to_groq_messages(messages)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # Parse parameters to the Groq API's parameters
 | 
				
			||||||
 | 
					        groq_params = self.parse_params(params)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # Add tools to the call if we have them and aren't hiding them
 | 
				
			||||||
 | 
					        if "tools" in params:
 | 
				
			||||||
 | 
					            hide_tools = validate_parameter(
 | 
				
			||||||
 | 
					                params, "hide_tools", str, False, "never", None, ["if_all_run", "if_any_run", "never"]
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
 | 
					            if not should_hide_tools(groq_messages, params["tools"], hide_tools):
 | 
				
			||||||
 | 
					                groq_params["tools"] = params["tools"]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        groq_params["messages"] = groq_messages
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # We use chat model by default, and set max_retries to 5 (in line with typical retries loop)
 | 
				
			||||||
 | 
					        client = Groq(api_key=self.api_key, max_retries=5)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # Token counts will be returned
 | 
				
			||||||
 | 
					        prompt_tokens = 0
 | 
				
			||||||
 | 
					        completion_tokens = 0
 | 
				
			||||||
 | 
					        total_tokens = 0
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # Streaming tool call recommendations
 | 
				
			||||||
 | 
					        streaming_tool_calls = []
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        ans = None
 | 
				
			||||||
 | 
					        try:
 | 
				
			||||||
 | 
					            response = client.chat.completions.create(**groq_params)
 | 
				
			||||||
 | 
					        except Exception as e:
 | 
				
			||||||
 | 
					            raise RuntimeError(f"Groq exception occurred: {e}")
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            if groq_params["stream"]:
 | 
				
			||||||
 | 
					                # Read in the chunks as they stream, taking in tool_calls which may be across
 | 
				
			||||||
 | 
					                # multiple chunks if more than one suggested
 | 
				
			||||||
 | 
					                ans = ""
 | 
				
			||||||
 | 
					                for chunk in response:
 | 
				
			||||||
 | 
					                    ans = ans + (chunk.choices[0].delta.content or "")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                    if chunk.choices[0].delta.tool_calls:
 | 
				
			||||||
 | 
					                        # We have a tool call recommendation
 | 
				
			||||||
 | 
					                        for tool_call in chunk.choices[0].delta.tool_calls:
 | 
				
			||||||
 | 
					                            streaming_tool_calls.append(
 | 
				
			||||||
 | 
					                                ChatCompletionMessageToolCall(
 | 
				
			||||||
 | 
					                                    id=tool_call.id,
 | 
				
			||||||
 | 
					                                    function={
 | 
				
			||||||
 | 
					                                        "name": tool_call.function.name,
 | 
				
			||||||
 | 
					                                        "arguments": tool_call.function.arguments,
 | 
				
			||||||
 | 
					                                    },
 | 
				
			||||||
 | 
					                                    type="function",
 | 
				
			||||||
 | 
					                                )
 | 
				
			||||||
 | 
					                            )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                    if chunk.choices[0].finish_reason:
 | 
				
			||||||
 | 
					                        prompt_tokens = chunk.x_groq.usage.prompt_tokens
 | 
				
			||||||
 | 
					                        completion_tokens = chunk.x_groq.usage.completion_tokens
 | 
				
			||||||
 | 
					                        total_tokens = chunk.x_groq.usage.total_tokens
 | 
				
			||||||
 | 
					            else:
 | 
				
			||||||
 | 
					                # Non-streaming finished
 | 
				
			||||||
 | 
					                ans: str = response.choices[0].message.content
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                prompt_tokens = response.usage.prompt_tokens
 | 
				
			||||||
 | 
					                completion_tokens = response.usage.completion_tokens
 | 
				
			||||||
 | 
					                total_tokens = response.usage.total_tokens
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if response is not None:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            if isinstance(response, Stream):
 | 
				
			||||||
 | 
					                # Streaming response
 | 
				
			||||||
 | 
					                if chunk.choices[0].finish_reason == "tool_calls":
 | 
				
			||||||
 | 
					                    groq_finish = "tool_calls"
 | 
				
			||||||
 | 
					                    tool_calls = streaming_tool_calls
 | 
				
			||||||
 | 
					                else:
 | 
				
			||||||
 | 
					                    groq_finish = "stop"
 | 
				
			||||||
 | 
					                    tool_calls = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                response_content = ans
 | 
				
			||||||
 | 
					                response_id = chunk.id
 | 
				
			||||||
 | 
					            else:
 | 
				
			||||||
 | 
					                # Non-streaming response
 | 
				
			||||||
 | 
					                # If we have tool calls as the response, populate completed tool calls for our return OAI response
 | 
				
			||||||
 | 
					                if response.choices[0].finish_reason == "tool_calls":
 | 
				
			||||||
 | 
					                    groq_finish = "tool_calls"
 | 
				
			||||||
 | 
					                    tool_calls = []
 | 
				
			||||||
 | 
					                    for tool_call in response.choices[0].message.tool_calls:
 | 
				
			||||||
 | 
					                        tool_calls.append(
 | 
				
			||||||
 | 
					                            ChatCompletionMessageToolCall(
 | 
				
			||||||
 | 
					                                id=tool_call.id,
 | 
				
			||||||
 | 
					                                function={"name": tool_call.function.name, "arguments": tool_call.function.arguments},
 | 
				
			||||||
 | 
					                                type="function",
 | 
				
			||||||
 | 
					                            )
 | 
				
			||||||
 | 
					                        )
 | 
				
			||||||
 | 
					                else:
 | 
				
			||||||
 | 
					                    groq_finish = "stop"
 | 
				
			||||||
 | 
					                    tool_calls = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                response_content = response.choices[0].message.content
 | 
				
			||||||
 | 
					                response_id = response.id
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            raise RuntimeError("Failed to get response from Groq after retrying 5 times.")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # 3. convert output
 | 
				
			||||||
 | 
					        message = ChatCompletionMessage(
 | 
				
			||||||
 | 
					            role="assistant",
 | 
				
			||||||
 | 
					            content=response_content,
 | 
				
			||||||
 | 
					            function_call=None,
 | 
				
			||||||
 | 
					            tool_calls=tool_calls,
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					        choices = [Choice(finish_reason=groq_finish, index=0, message=message)]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        response_oai = ChatCompletion(
 | 
				
			||||||
 | 
					            id=response_id,
 | 
				
			||||||
 | 
					            model=groq_params["model"],
 | 
				
			||||||
 | 
					            created=int(time.time()),
 | 
				
			||||||
 | 
					            object="chat.completion",
 | 
				
			||||||
 | 
					            choices=choices,
 | 
				
			||||||
 | 
					            usage=CompletionUsage(
 | 
				
			||||||
 | 
					                prompt_tokens=prompt_tokens,
 | 
				
			||||||
 | 
					                completion_tokens=completion_tokens,
 | 
				
			||||||
 | 
					                total_tokens=total_tokens,
 | 
				
			||||||
 | 
					            ),
 | 
				
			||||||
 | 
					            cost=calculate_groq_cost(prompt_tokens, completion_tokens, groq_params["model"]),
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        return response_oai
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def oai_messages_to_groq_messages(messages: list[Dict[str, Any]]) -> list[dict[str, Any]]:
 | 
				
			||||||
 | 
					    """Convert messages from OAI format to Groq's format.
 | 
				
			||||||
 | 
					    We correct for any specific role orders and types.
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    groq_messages = copy.deepcopy(messages)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # If we have a message with role='tool', which occurs when a function is executed, change it to 'user'
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    for msg in together_messages:
 | 
				
			||||||
 | 
					        if "role" in msg and msg["role"] == "tool":
 | 
				
			||||||
 | 
					            msg["role"] = "user"
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Remove the name field
 | 
				
			||||||
 | 
					    for message in groq_messages:
 | 
				
			||||||
 | 
					        if "name" in message:
 | 
				
			||||||
 | 
					            message.pop("name", None)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return groq_messages
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def calculate_groq_cost(input_tokens: int, output_tokens: int, model: str) -> float:
 | 
				
			||||||
 | 
					    """Calculate the cost of the completion using the Groq pricing."""
 | 
				
			||||||
 | 
					    total = 0.0
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if model in GROQ_PRICING_1K:
 | 
				
			||||||
 | 
					        input_cost_per_k, output_cost_per_k = GROQ_PRICING_1K[model]
 | 
				
			||||||
 | 
					        input_cost = (input_tokens / 1000) * input_cost_per_k
 | 
				
			||||||
 | 
					        output_cost = (output_tokens / 1000) * output_cost_per_k
 | 
				
			||||||
 | 
					        total = input_cost + output_cost
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        warnings.warn(f"Cost calculation not available for model {model}", UserWarning)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return total
 | 
				
			||||||
@ -15,6 +15,7 @@ if TYPE_CHECKING:
 | 
				
			|||||||
    from autogen import Agent, ConversableAgent, OpenAIWrapper
 | 
					    from autogen import Agent, ConversableAgent, OpenAIWrapper
 | 
				
			||||||
    from autogen.oai.anthropic import AnthropicClient
 | 
					    from autogen.oai.anthropic import AnthropicClient
 | 
				
			||||||
    from autogen.oai.gemini import GeminiClient
 | 
					    from autogen.oai.gemini import GeminiClient
 | 
				
			||||||
 | 
					    from autogen.oai.groq import GroqClient
 | 
				
			||||||
    from autogen.oai.mistral import MistralAIClient
 | 
					    from autogen.oai.mistral import MistralAIClient
 | 
				
			||||||
    from autogen.oai.together import TogetherClient
 | 
					    from autogen.oai.together import TogetherClient
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -110,7 +111,7 @@ def log_new_wrapper(wrapper: OpenAIWrapper, init_args: Dict[str, Union[LLMConfig
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def log_new_client(
 | 
					def log_new_client(
 | 
				
			||||||
    client: Union[AzureOpenAI, OpenAI, GeminiClient, AnthropicClient, MistralAIClient, TogetherClient],
 | 
					    client: Union[AzureOpenAI, OpenAI, GeminiClient, AnthropicClient, MistralAIClient, TogetherClient, GroqClient],
 | 
				
			||||||
    wrapper: OpenAIWrapper,
 | 
					    wrapper: OpenAIWrapper,
 | 
				
			||||||
    init_args: Dict[str, Any],
 | 
					    init_args: Dict[str, Any],
 | 
				
			||||||
) -> None:
 | 
					) -> None:
 | 
				
			||||||
 | 
				
			|||||||
							
								
								
									
										1
									
								
								setup.py
									
									
									
									
									
								
							
							
						
						
									
										1
									
								
								setup.py
									
									
									
									
									
								
							@ -91,6 +91,7 @@ extra_require = {
 | 
				
			|||||||
    "long-context": ["llmlingua<0.3"],
 | 
					    "long-context": ["llmlingua<0.3"],
 | 
				
			||||||
    "anthropic": ["anthropic>=0.23.1"],
 | 
					    "anthropic": ["anthropic>=0.23.1"],
 | 
				
			||||||
    "mistral": ["mistralai>=0.2.0"],
 | 
					    "mistral": ["mistralai>=0.2.0"],
 | 
				
			||||||
 | 
					    "groq": ["groq>=0.9.0"],
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
setuptools.setup(
 | 
					setuptools.setup(
 | 
				
			||||||
 | 
				
			|||||||
							
								
								
									
										249
									
								
								test/oai/test_groq.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										249
									
								
								test/oai/test_groq.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,249 @@
 | 
				
			|||||||
 | 
					from unittest.mock import MagicMock, patch
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import pytest
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					try:
 | 
				
			||||||
 | 
					    from autogen.oai.groq import GroqClient, calculate_groq_cost
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    skip = False
 | 
				
			||||||
 | 
					except ImportError:
 | 
				
			||||||
 | 
					    GroqClient = object
 | 
				
			||||||
 | 
					    InternalServerError = object
 | 
				
			||||||
 | 
					    skip = True
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Fixtures for mock data
 | 
				
			||||||
 | 
					@pytest.fixture
 | 
				
			||||||
 | 
					def mock_response():
 | 
				
			||||||
 | 
					    class MockResponse:
 | 
				
			||||||
 | 
					        def __init__(self, text, choices, usage, cost, model):
 | 
				
			||||||
 | 
					            self.text = text
 | 
				
			||||||
 | 
					            self.choices = choices
 | 
				
			||||||
 | 
					            self.usage = usage
 | 
				
			||||||
 | 
					            self.cost = cost
 | 
				
			||||||
 | 
					            self.model = model
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return MockResponse
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					@pytest.fixture
 | 
				
			||||||
 | 
					def groq_client():
 | 
				
			||||||
 | 
					    return GroqClient(api_key="fake_api_key")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					skip_reason = "Groq dependency is not installed"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Test initialization and configuration
 | 
				
			||||||
 | 
					@pytest.mark.skipif(skip, reason=skip_reason)
 | 
				
			||||||
 | 
					def test_initialization():
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Missing any api_key
 | 
				
			||||||
 | 
					    with pytest.raises(AssertionError) as assertinfo:
 | 
				
			||||||
 | 
					        GroqClient()  # Should raise an AssertionError due to missing api_key
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    assert "Please include the api_key in your config list entry for Groq or set the GROQ_API_KEY env variable." in str(
 | 
				
			||||||
 | 
					        assertinfo.value
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Creation works
 | 
				
			||||||
 | 
					    GroqClient(api_key="fake_api_key")  # Should create okay now.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Test standard initialization
 | 
				
			||||||
 | 
					@pytest.mark.skipif(skip, reason=skip_reason)
 | 
				
			||||||
 | 
					def test_valid_initialization(groq_client):
 | 
				
			||||||
 | 
					    assert groq_client.api_key == "fake_api_key", "Config api_key should be correctly set"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Test parameters
 | 
				
			||||||
 | 
					@pytest.mark.skipif(skip, reason=skip_reason)
 | 
				
			||||||
 | 
					def test_parsing_params(groq_client):
 | 
				
			||||||
 | 
					    # All parameters
 | 
				
			||||||
 | 
					    params = {
 | 
				
			||||||
 | 
					        "model": "llama3-8b-8192",
 | 
				
			||||||
 | 
					        "frequency_penalty": 1.5,
 | 
				
			||||||
 | 
					        "presence_penalty": 1.5,
 | 
				
			||||||
 | 
					        "max_tokens": 1000,
 | 
				
			||||||
 | 
					        "seed": 42,
 | 
				
			||||||
 | 
					        "stream": False,
 | 
				
			||||||
 | 
					        "temperature": 1,
 | 
				
			||||||
 | 
					        "top_p": 0.8,
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    expected_params = {
 | 
				
			||||||
 | 
					        "model": "llama3-8b-8192",
 | 
				
			||||||
 | 
					        "frequency_penalty": 1.5,
 | 
				
			||||||
 | 
					        "presence_penalty": 1.5,
 | 
				
			||||||
 | 
					        "max_tokens": 1000,
 | 
				
			||||||
 | 
					        "seed": 42,
 | 
				
			||||||
 | 
					        "stream": False,
 | 
				
			||||||
 | 
					        "temperature": 1,
 | 
				
			||||||
 | 
					        "top_p": 0.8,
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    result = groq_client.parse_params(params)
 | 
				
			||||||
 | 
					    assert result == expected_params
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Only model, others set as defaults
 | 
				
			||||||
 | 
					    params = {
 | 
				
			||||||
 | 
					        "model": "llama3-8b-8192",
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    expected_params = {
 | 
				
			||||||
 | 
					        "model": "llama3-8b-8192",
 | 
				
			||||||
 | 
					        "frequency_penalty": None,
 | 
				
			||||||
 | 
					        "presence_penalty": None,
 | 
				
			||||||
 | 
					        "max_tokens": None,
 | 
				
			||||||
 | 
					        "seed": None,
 | 
				
			||||||
 | 
					        "stream": False,
 | 
				
			||||||
 | 
					        "temperature": 1,
 | 
				
			||||||
 | 
					        "top_p": None,
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    result = groq_client.parse_params(params)
 | 
				
			||||||
 | 
					    assert result == expected_params
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Incorrect types, defaults should be set, will show warnings but not trigger assertions
 | 
				
			||||||
 | 
					    params = {
 | 
				
			||||||
 | 
					        "model": "llama3-8b-8192",
 | 
				
			||||||
 | 
					        "frequency_penalty": "1.5",
 | 
				
			||||||
 | 
					        "presence_penalty": "1.5",
 | 
				
			||||||
 | 
					        "max_tokens": "1000",
 | 
				
			||||||
 | 
					        "seed": "42",
 | 
				
			||||||
 | 
					        "stream": "False",
 | 
				
			||||||
 | 
					        "temperature": "1",
 | 
				
			||||||
 | 
					        "top_p": "0.8",
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    result = groq_client.parse_params(params)
 | 
				
			||||||
 | 
					    assert result == expected_params
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Values outside bounds, should warn and set to defaults
 | 
				
			||||||
 | 
					    params = {
 | 
				
			||||||
 | 
					        "model": "llama3-8b-8192",
 | 
				
			||||||
 | 
					        "frequency_penalty": 5000,
 | 
				
			||||||
 | 
					        "presence_penalty": -500,
 | 
				
			||||||
 | 
					        "temperature": 3,
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    result = groq_client.parse_params(params)
 | 
				
			||||||
 | 
					    assert result == expected_params
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # No model
 | 
				
			||||||
 | 
					    params = {
 | 
				
			||||||
 | 
					        "frequency_penalty": 1,
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    with pytest.raises(AssertionError) as assertinfo:
 | 
				
			||||||
 | 
					        result = groq_client.parse_params(params)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    assert "Please specify the 'model' in your config list entry to nominate the Groq model to use." in str(
 | 
				
			||||||
 | 
					        assertinfo.value
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Test cost calculation
 | 
				
			||||||
 | 
					@pytest.mark.skipif(skip, reason=skip_reason)
 | 
				
			||||||
 | 
					def test_cost_calculation(mock_response):
 | 
				
			||||||
 | 
					    response = mock_response(
 | 
				
			||||||
 | 
					        text="Example response",
 | 
				
			||||||
 | 
					        choices=[{"message": "Test message 1"}],
 | 
				
			||||||
 | 
					        usage={"prompt_tokens": 500, "completion_tokens": 300, "total_tokens": 800},
 | 
				
			||||||
 | 
					        cost=None,
 | 
				
			||||||
 | 
					        model="llama3-70b-8192",
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					    assert (
 | 
				
			||||||
 | 
					        calculate_groq_cost(response.usage["prompt_tokens"], response.usage["completion_tokens"], response.model)
 | 
				
			||||||
 | 
					        == 0.000532
 | 
				
			||||||
 | 
					    ), "Cost for this should be $0.000532"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Test text generation
 | 
				
			||||||
 | 
					@pytest.mark.skipif(skip, reason=skip_reason)
 | 
				
			||||||
 | 
					@patch("autogen.oai.groq.GroqClient.create")
 | 
				
			||||||
 | 
					def test_create_response(mock_chat, groq_client):
 | 
				
			||||||
 | 
					    # Mock GroqClient.chat response
 | 
				
			||||||
 | 
					    mock_groq_response = MagicMock()
 | 
				
			||||||
 | 
					    mock_groq_response.choices = [
 | 
				
			||||||
 | 
					        MagicMock(finish_reason="stop", message=MagicMock(content="Example Groq response", tool_calls=None))
 | 
				
			||||||
 | 
					    ]
 | 
				
			||||||
 | 
					    mock_groq_response.id = "mock_groq_response_id"
 | 
				
			||||||
 | 
					    mock_groq_response.model = "llama3-70b-8192"
 | 
				
			||||||
 | 
					    mock_groq_response.usage = MagicMock(prompt_tokens=10, completion_tokens=20)  # Example token usage
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    mock_chat.return_value = mock_groq_response
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Test parameters
 | 
				
			||||||
 | 
					    params = {
 | 
				
			||||||
 | 
					        "messages": [{"role": "user", "content": "Hello"}, {"role": "assistant", "content": "World"}],
 | 
				
			||||||
 | 
					        "model": "llama3-70b-8192",
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Call the create method
 | 
				
			||||||
 | 
					    response = groq_client.create(params)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Assertions to check if response is structured as expected
 | 
				
			||||||
 | 
					    assert (
 | 
				
			||||||
 | 
					        response.choices[0].message.content == "Example Groq response"
 | 
				
			||||||
 | 
					    ), "Response content should match expected output"
 | 
				
			||||||
 | 
					    assert response.id == "mock_groq_response_id", "Response ID should match the mocked response ID"
 | 
				
			||||||
 | 
					    assert response.model == "llama3-70b-8192", "Response model should match the mocked response model"
 | 
				
			||||||
 | 
					    assert response.usage.prompt_tokens == 10, "Response prompt tokens should match the mocked response usage"
 | 
				
			||||||
 | 
					    assert response.usage.completion_tokens == 20, "Response completion tokens should match the mocked response usage"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Test functions/tools
 | 
				
			||||||
 | 
					@pytest.mark.skipif(skip, reason=skip_reason)
 | 
				
			||||||
 | 
					@patch("autogen.oai.groq.GroqClient.create")
 | 
				
			||||||
 | 
					def test_create_response_with_tool_call(mock_chat, groq_client):
 | 
				
			||||||
 | 
					    # Mock `groq_response = client.chat(**groq_params)`
 | 
				
			||||||
 | 
					    mock_function = MagicMock(name="currency_calculator")
 | 
				
			||||||
 | 
					    mock_function.name = "currency_calculator"
 | 
				
			||||||
 | 
					    mock_function.arguments = '{"base_currency": "EUR", "quote_currency": "USD", "base_amount": 123.45}'
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    mock_function_2 = MagicMock(name="get_weather")
 | 
				
			||||||
 | 
					    mock_function_2.name = "get_weather"
 | 
				
			||||||
 | 
					    mock_function_2.arguments = '{"location": "Chicago"}'
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    mock_chat.return_value = MagicMock(
 | 
				
			||||||
 | 
					        choices=[
 | 
				
			||||||
 | 
					            MagicMock(
 | 
				
			||||||
 | 
					                finish_reason="tool_calls",
 | 
				
			||||||
 | 
					                message=MagicMock(
 | 
				
			||||||
 | 
					                    content="Sample text about the functions",
 | 
				
			||||||
 | 
					                    tool_calls=[
 | 
				
			||||||
 | 
					                        MagicMock(id="gdRdrvnHh", function=mock_function),
 | 
				
			||||||
 | 
					                        MagicMock(id="abRdrvnHh", function=mock_function_2),
 | 
				
			||||||
 | 
					                    ],
 | 
				
			||||||
 | 
					                ),
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
 | 
					        ],
 | 
				
			||||||
 | 
					        id="mock_groq_response_id",
 | 
				
			||||||
 | 
					        model="llama3-70b-8192",
 | 
				
			||||||
 | 
					        usage=MagicMock(prompt_tokens=10, completion_tokens=20),
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Construct parameters
 | 
				
			||||||
 | 
					    converted_functions = [
 | 
				
			||||||
 | 
					        {
 | 
				
			||||||
 | 
					            "type": "function",
 | 
				
			||||||
 | 
					            "function": {
 | 
				
			||||||
 | 
					                "description": "Currency exchange calculator.",
 | 
				
			||||||
 | 
					                "name": "currency_calculator",
 | 
				
			||||||
 | 
					                "parameters": {
 | 
				
			||||||
 | 
					                    "type": "object",
 | 
				
			||||||
 | 
					                    "properties": {
 | 
				
			||||||
 | 
					                        "base_amount": {"type": "number", "description": "Amount of currency in base_currency"},
 | 
				
			||||||
 | 
					                    },
 | 
				
			||||||
 | 
					                    "required": ["base_amount"],
 | 
				
			||||||
 | 
					                },
 | 
				
			||||||
 | 
					            },
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					    ]
 | 
				
			||||||
 | 
					    groq_messages = [
 | 
				
			||||||
 | 
					        {"role": "user", "content": "How much is 123.45 EUR in USD?"},
 | 
				
			||||||
 | 
					        {"role": "assistant", "content": "World"},
 | 
				
			||||||
 | 
					    ]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Call the create method
 | 
				
			||||||
 | 
					    response = groq_client.create({"messages": groq_messages, "tools": converted_functions, "model": "llama3-70b-8192"})
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Assertions to check if the functions and content are included in the response
 | 
				
			||||||
 | 
					    assert response.choices[0].message.content == "Sample text about the functions"
 | 
				
			||||||
 | 
					    assert response.choices[0].message.tool_calls[0].function.name == "currency_calculator"
 | 
				
			||||||
 | 
					    assert response.choices[0].message.tool_calls[1].function.name == "get_weather"
 | 
				
			||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user