mirror of
https://github.com/microsoft/autogen.git
synced 2025-11-01 10:19:46 +00:00
adding catch for HTTP error (#432)
This commit is contained in:
parent
1a479e4bdb
commit
438ccaa0c9
@ -2,6 +2,7 @@ import sys
|
||||
import pytest
|
||||
import pickle
|
||||
import shutil
|
||||
import requests
|
||||
|
||||
|
||||
@pytest.mark.skipif(sys.platform == "darwin", reason="do not run on mac os")
|
||||
@ -92,9 +93,16 @@ def test_hf_data():
|
||||
"fp16": False,
|
||||
}
|
||||
|
||||
automl.fit(
|
||||
X_train=X_train, y_train=y_train, X_val=X_val, y_val=y_val, **automl_settings
|
||||
)
|
||||
try:
|
||||
automl.fit(
|
||||
X_train=X_train,
|
||||
y_train=y_train,
|
||||
X_val=X_val,
|
||||
y_val=y_val,
|
||||
**automl_settings
|
||||
)
|
||||
except requests.exceptions.HTTPError:
|
||||
return
|
||||
|
||||
automl = AutoML()
|
||||
automl.retrain_from_log(
|
||||
@ -132,8 +140,8 @@ def _test_custom_data():
|
||||
train_dataset = pd.read_csv("data/input/train.tsv", delimiter="\t", quoting=3)
|
||||
dev_dataset = pd.read_csv("data/input/dev.tsv", delimiter="\t", quoting=3)
|
||||
test_dataset = pd.read_csv("data/input/test.tsv", delimiter="\t", quoting=3)
|
||||
except requests.exceptions.ConnectionError:
|
||||
pass
|
||||
except requests.exceptions.HTTPError:
|
||||
return
|
||||
|
||||
custom_sent_keys = ["#1 String", "#2 String"]
|
||||
label_key = "Quality"
|
||||
|
||||
@ -1,6 +1,7 @@
|
||||
def test_classification_head():
|
||||
from flaml import AutoML
|
||||
import pandas as pd
|
||||
import requests
|
||||
|
||||
train_data = {
|
||||
"text": [
|
||||
@ -54,10 +55,17 @@ def test_classification_head():
|
||||
automl_settings["custom_hpo_args"] = {
|
||||
"model_path": "google/electra-small-discriminator",
|
||||
"output_dir": "test/data/output/",
|
||||
"ckpt_per_epoch": 5,
|
||||
"ckpt_per_epoch": 1,
|
||||
"fp16": False,
|
||||
}
|
||||
|
||||
automl.fit(
|
||||
X_train=X_train, y_train=y_train, X_val=X_val, y_val=y_val, **automl_settings
|
||||
)
|
||||
try:
|
||||
automl.fit(
|
||||
X_train=X_train,
|
||||
y_train=y_train,
|
||||
X_val=X_val,
|
||||
y_val=y_val,
|
||||
**automl_settings
|
||||
)
|
||||
except requests.exceptions.HTTPError:
|
||||
return
|
||||
|
||||
@ -43,6 +43,7 @@ def custom_metric(
|
||||
def test_custom_metric():
|
||||
from flaml import AutoML
|
||||
import pandas as pd
|
||||
import requests
|
||||
|
||||
train_data = {
|
||||
"sentence1": [
|
||||
@ -105,13 +106,20 @@ def test_custom_metric():
|
||||
automl_settings["custom_hpo_args"] = {
|
||||
"model_path": "google/electra-small-discriminator",
|
||||
"output_dir": "data/output/",
|
||||
"ckpt_per_epoch": 5,
|
||||
"ckpt_per_epoch": 1,
|
||||
"fp16": False,
|
||||
}
|
||||
|
||||
automl.fit(
|
||||
X_train=X_train, y_train=y_train, X_val=X_val, y_val=y_val, **automl_settings
|
||||
)
|
||||
try:
|
||||
automl.fit(
|
||||
X_train=X_train,
|
||||
y_train=y_train,
|
||||
X_val=X_val,
|
||||
y_val=y_val,
|
||||
**automl_settings
|
||||
)
|
||||
except requests.exceptions.HTTPError:
|
||||
return
|
||||
|
||||
# testing calling custom metric in TransformersEstimator._compute_metrics_by_dataset_name
|
||||
|
||||
|
||||
@ -6,6 +6,7 @@ import pytest
|
||||
def test_cv():
|
||||
from flaml import AutoML
|
||||
import pandas as pd
|
||||
import requests
|
||||
|
||||
train_data = {
|
||||
"sentence1": [
|
||||
@ -49,7 +50,10 @@ def test_cv():
|
||||
"fp16": False,
|
||||
}
|
||||
|
||||
automl.fit(X_train=X_train, y_train=y_train, **automl_settings)
|
||||
try:
|
||||
automl.fit(X_train=X_train, y_train=y_train, **automl_settings)
|
||||
except requests.exceptions.HTTPError:
|
||||
return
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@ -5,7 +5,7 @@ import pytest
|
||||
@pytest.mark.skipif(sys.platform == "darwin", reason="do not run on mac os")
|
||||
def test_mcc():
|
||||
from flaml import AutoML
|
||||
|
||||
import requests
|
||||
import pandas as pd
|
||||
|
||||
train_data = {
|
||||
@ -219,13 +219,20 @@ def test_mcc():
|
||||
automl_settings["custom_hpo_args"] = {
|
||||
"model_path": "google/electra-small-discriminator",
|
||||
"output_dir": "test/data/output/",
|
||||
"ckpt_per_epoch": 5,
|
||||
"ckpt_per_epoch": 1,
|
||||
"fp16": False,
|
||||
}
|
||||
|
||||
automl.fit(
|
||||
X_train=X_train, y_train=y_train, X_val=X_val, y_val=y_val, **automl_settings
|
||||
)
|
||||
try:
|
||||
automl.fit(
|
||||
X_train=X_train,
|
||||
y_train=y_train,
|
||||
X_val=X_val,
|
||||
y_val=y_val,
|
||||
**automl_settings
|
||||
)
|
||||
except requests.exceptions.HTTPError:
|
||||
return
|
||||
|
||||
y_pred = automl.predict(X_test)
|
||||
proba = automl.predict_proba(X_test)
|
||||
|
||||
@ -71,12 +71,12 @@ def test_regression():
|
||||
automl_settings["custom_hpo_args"] = {
|
||||
"model_path": "google/electra-small-discriminator",
|
||||
"output_dir": "test/data/output/",
|
||||
"ckpt_per_epoch": 5,
|
||||
"ckpt_per_epoch": 1,
|
||||
"fp16": False,
|
||||
}
|
||||
|
||||
ray.shutdown()
|
||||
ray.init()
|
||||
|
||||
automl.fit(
|
||||
X_train=X_train, y_train=y_train, X_val=X_val, y_val=y_val, **automl_settings
|
||||
)
|
||||
|
||||
@ -1,5 +1,6 @@
|
||||
import sys
|
||||
import pytest
|
||||
import requests
|
||||
|
||||
|
||||
@pytest.mark.skipif(sys.platform == "darwin", reason="do not run on mac os")
|
||||
@ -60,13 +61,20 @@ def test_summarization():
|
||||
automl_settings["custom_hpo_args"] = {
|
||||
"model_path": "patrickvonplaten/t5-tiny-random",
|
||||
"output_dir": "test/data/output/",
|
||||
"ckpt_per_epoch": 5,
|
||||
"ckpt_per_epoch": 1,
|
||||
"fp16": False,
|
||||
}
|
||||
|
||||
automl.fit(
|
||||
X_train=X_train, y_train=y_train, X_val=X_val, y_val=y_val, **automl_settings
|
||||
)
|
||||
try:
|
||||
automl.fit(
|
||||
X_train=X_train,
|
||||
y_train=y_train,
|
||||
X_val=X_val,
|
||||
y_val=y_val,
|
||||
**automl_settings
|
||||
)
|
||||
except requests.exceptions.HTTPError:
|
||||
return
|
||||
automl = AutoML()
|
||||
automl.retrain_from_log(
|
||||
X_train=X_train,
|
||||
|
||||
@ -1,5 +1,6 @@
|
||||
import sys
|
||||
import pytest
|
||||
import requests
|
||||
|
||||
|
||||
@pytest.mark.skipif(sys.platform == "darwin", reason="do not run on mac os")
|
||||
@ -728,13 +729,20 @@ def test_tokenclassification():
|
||||
automl_settings["custom_hpo_args"] = {
|
||||
"model_path": "bert-base-uncased",
|
||||
"output_dir": "test/data/output/",
|
||||
"ckpt_per_epoch": 5,
|
||||
"ckpt_per_epoch": 1,
|
||||
"fp16": False,
|
||||
}
|
||||
|
||||
automl.fit(
|
||||
X_train=X_train, y_train=y_train, X_val=X_val, y_val=y_val, **automl_settings
|
||||
)
|
||||
try:
|
||||
automl.fit(
|
||||
X_train=X_train,
|
||||
y_train=y_train,
|
||||
X_val=X_val,
|
||||
y_val=y_val,
|
||||
**automl_settings
|
||||
)
|
||||
except requests.exceptions.HTTPError:
|
||||
return
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@ -64,7 +64,7 @@ def _test_xgboost(method="BlendSearch"):
|
||||
max_iter = 10
|
||||
for num_samples in [128]:
|
||||
time_budget_s = 60
|
||||
for n_cpu in [4]:
|
||||
for n_cpu in [2]:
|
||||
start_time = time.time()
|
||||
ray.shutdown()
|
||||
ray.init(num_cpus=n_cpu, num_gpus=0)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user