mirror of
https://github.com/microsoft/autogen.git
synced 2025-11-03 03:10:04 +00:00
adding catch for HTTP error (#432)
This commit is contained in:
parent
1a479e4bdb
commit
438ccaa0c9
@ -2,6 +2,7 @@ import sys
|
|||||||
import pytest
|
import pytest
|
||||||
import pickle
|
import pickle
|
||||||
import shutil
|
import shutil
|
||||||
|
import requests
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.skipif(sys.platform == "darwin", reason="do not run on mac os")
|
@pytest.mark.skipif(sys.platform == "darwin", reason="do not run on mac os")
|
||||||
@ -92,9 +93,16 @@ def test_hf_data():
|
|||||||
"fp16": False,
|
"fp16": False,
|
||||||
}
|
}
|
||||||
|
|
||||||
automl.fit(
|
try:
|
||||||
X_train=X_train, y_train=y_train, X_val=X_val, y_val=y_val, **automl_settings
|
automl.fit(
|
||||||
)
|
X_train=X_train,
|
||||||
|
y_train=y_train,
|
||||||
|
X_val=X_val,
|
||||||
|
y_val=y_val,
|
||||||
|
**automl_settings
|
||||||
|
)
|
||||||
|
except requests.exceptions.HTTPError:
|
||||||
|
return
|
||||||
|
|
||||||
automl = AutoML()
|
automl = AutoML()
|
||||||
automl.retrain_from_log(
|
automl.retrain_from_log(
|
||||||
@ -132,8 +140,8 @@ def _test_custom_data():
|
|||||||
train_dataset = pd.read_csv("data/input/train.tsv", delimiter="\t", quoting=3)
|
train_dataset = pd.read_csv("data/input/train.tsv", delimiter="\t", quoting=3)
|
||||||
dev_dataset = pd.read_csv("data/input/dev.tsv", delimiter="\t", quoting=3)
|
dev_dataset = pd.read_csv("data/input/dev.tsv", delimiter="\t", quoting=3)
|
||||||
test_dataset = pd.read_csv("data/input/test.tsv", delimiter="\t", quoting=3)
|
test_dataset = pd.read_csv("data/input/test.tsv", delimiter="\t", quoting=3)
|
||||||
except requests.exceptions.ConnectionError:
|
except requests.exceptions.HTTPError:
|
||||||
pass
|
return
|
||||||
|
|
||||||
custom_sent_keys = ["#1 String", "#2 String"]
|
custom_sent_keys = ["#1 String", "#2 String"]
|
||||||
label_key = "Quality"
|
label_key = "Quality"
|
||||||
|
|||||||
@ -1,6 +1,7 @@
|
|||||||
def test_classification_head():
|
def test_classification_head():
|
||||||
from flaml import AutoML
|
from flaml import AutoML
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
import requests
|
||||||
|
|
||||||
train_data = {
|
train_data = {
|
||||||
"text": [
|
"text": [
|
||||||
@ -54,10 +55,17 @@ def test_classification_head():
|
|||||||
automl_settings["custom_hpo_args"] = {
|
automl_settings["custom_hpo_args"] = {
|
||||||
"model_path": "google/electra-small-discriminator",
|
"model_path": "google/electra-small-discriminator",
|
||||||
"output_dir": "test/data/output/",
|
"output_dir": "test/data/output/",
|
||||||
"ckpt_per_epoch": 5,
|
"ckpt_per_epoch": 1,
|
||||||
"fp16": False,
|
"fp16": False,
|
||||||
}
|
}
|
||||||
|
|
||||||
automl.fit(
|
try:
|
||||||
X_train=X_train, y_train=y_train, X_val=X_val, y_val=y_val, **automl_settings
|
automl.fit(
|
||||||
)
|
X_train=X_train,
|
||||||
|
y_train=y_train,
|
||||||
|
X_val=X_val,
|
||||||
|
y_val=y_val,
|
||||||
|
**automl_settings
|
||||||
|
)
|
||||||
|
except requests.exceptions.HTTPError:
|
||||||
|
return
|
||||||
|
|||||||
@ -43,6 +43,7 @@ def custom_metric(
|
|||||||
def test_custom_metric():
|
def test_custom_metric():
|
||||||
from flaml import AutoML
|
from flaml import AutoML
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
import requests
|
||||||
|
|
||||||
train_data = {
|
train_data = {
|
||||||
"sentence1": [
|
"sentence1": [
|
||||||
@ -105,13 +106,20 @@ def test_custom_metric():
|
|||||||
automl_settings["custom_hpo_args"] = {
|
automl_settings["custom_hpo_args"] = {
|
||||||
"model_path": "google/electra-small-discriminator",
|
"model_path": "google/electra-small-discriminator",
|
||||||
"output_dir": "data/output/",
|
"output_dir": "data/output/",
|
||||||
"ckpt_per_epoch": 5,
|
"ckpt_per_epoch": 1,
|
||||||
"fp16": False,
|
"fp16": False,
|
||||||
}
|
}
|
||||||
|
|
||||||
automl.fit(
|
try:
|
||||||
X_train=X_train, y_train=y_train, X_val=X_val, y_val=y_val, **automl_settings
|
automl.fit(
|
||||||
)
|
X_train=X_train,
|
||||||
|
y_train=y_train,
|
||||||
|
X_val=X_val,
|
||||||
|
y_val=y_val,
|
||||||
|
**automl_settings
|
||||||
|
)
|
||||||
|
except requests.exceptions.HTTPError:
|
||||||
|
return
|
||||||
|
|
||||||
# testing calling custom metric in TransformersEstimator._compute_metrics_by_dataset_name
|
# testing calling custom metric in TransformersEstimator._compute_metrics_by_dataset_name
|
||||||
|
|
||||||
|
|||||||
@ -6,6 +6,7 @@ import pytest
|
|||||||
def test_cv():
|
def test_cv():
|
||||||
from flaml import AutoML
|
from flaml import AutoML
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
import requests
|
||||||
|
|
||||||
train_data = {
|
train_data = {
|
||||||
"sentence1": [
|
"sentence1": [
|
||||||
@ -49,7 +50,10 @@ def test_cv():
|
|||||||
"fp16": False,
|
"fp16": False,
|
||||||
}
|
}
|
||||||
|
|
||||||
automl.fit(X_train=X_train, y_train=y_train, **automl_settings)
|
try:
|
||||||
|
automl.fit(X_train=X_train, y_train=y_train, **automl_settings)
|
||||||
|
except requests.exceptions.HTTPError:
|
||||||
|
return
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|||||||
@ -5,7 +5,7 @@ import pytest
|
|||||||
@pytest.mark.skipif(sys.platform == "darwin", reason="do not run on mac os")
|
@pytest.mark.skipif(sys.platform == "darwin", reason="do not run on mac os")
|
||||||
def test_mcc():
|
def test_mcc():
|
||||||
from flaml import AutoML
|
from flaml import AutoML
|
||||||
|
import requests
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
|
||||||
train_data = {
|
train_data = {
|
||||||
@ -219,13 +219,20 @@ def test_mcc():
|
|||||||
automl_settings["custom_hpo_args"] = {
|
automl_settings["custom_hpo_args"] = {
|
||||||
"model_path": "google/electra-small-discriminator",
|
"model_path": "google/electra-small-discriminator",
|
||||||
"output_dir": "test/data/output/",
|
"output_dir": "test/data/output/",
|
||||||
"ckpt_per_epoch": 5,
|
"ckpt_per_epoch": 1,
|
||||||
"fp16": False,
|
"fp16": False,
|
||||||
}
|
}
|
||||||
|
|
||||||
automl.fit(
|
try:
|
||||||
X_train=X_train, y_train=y_train, X_val=X_val, y_val=y_val, **automl_settings
|
automl.fit(
|
||||||
)
|
X_train=X_train,
|
||||||
|
y_train=y_train,
|
||||||
|
X_val=X_val,
|
||||||
|
y_val=y_val,
|
||||||
|
**automl_settings
|
||||||
|
)
|
||||||
|
except requests.exceptions.HTTPError:
|
||||||
|
return
|
||||||
|
|
||||||
y_pred = automl.predict(X_test)
|
y_pred = automl.predict(X_test)
|
||||||
proba = automl.predict_proba(X_test)
|
proba = automl.predict_proba(X_test)
|
||||||
|
|||||||
@ -71,12 +71,12 @@ def test_regression():
|
|||||||
automl_settings["custom_hpo_args"] = {
|
automl_settings["custom_hpo_args"] = {
|
||||||
"model_path": "google/electra-small-discriminator",
|
"model_path": "google/electra-small-discriminator",
|
||||||
"output_dir": "test/data/output/",
|
"output_dir": "test/data/output/",
|
||||||
"ckpt_per_epoch": 5,
|
"ckpt_per_epoch": 1,
|
||||||
"fp16": False,
|
"fp16": False,
|
||||||
}
|
}
|
||||||
|
|
||||||
ray.shutdown()
|
ray.shutdown()
|
||||||
ray.init()
|
|
||||||
automl.fit(
|
automl.fit(
|
||||||
X_train=X_train, y_train=y_train, X_val=X_val, y_val=y_val, **automl_settings
|
X_train=X_train, y_train=y_train, X_val=X_val, y_val=y_val, **automl_settings
|
||||||
)
|
)
|
||||||
|
|||||||
@ -1,5 +1,6 @@
|
|||||||
import sys
|
import sys
|
||||||
import pytest
|
import pytest
|
||||||
|
import requests
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.skipif(sys.platform == "darwin", reason="do not run on mac os")
|
@pytest.mark.skipif(sys.platform == "darwin", reason="do not run on mac os")
|
||||||
@ -60,13 +61,20 @@ def test_summarization():
|
|||||||
automl_settings["custom_hpo_args"] = {
|
automl_settings["custom_hpo_args"] = {
|
||||||
"model_path": "patrickvonplaten/t5-tiny-random",
|
"model_path": "patrickvonplaten/t5-tiny-random",
|
||||||
"output_dir": "test/data/output/",
|
"output_dir": "test/data/output/",
|
||||||
"ckpt_per_epoch": 5,
|
"ckpt_per_epoch": 1,
|
||||||
"fp16": False,
|
"fp16": False,
|
||||||
}
|
}
|
||||||
|
|
||||||
automl.fit(
|
try:
|
||||||
X_train=X_train, y_train=y_train, X_val=X_val, y_val=y_val, **automl_settings
|
automl.fit(
|
||||||
)
|
X_train=X_train,
|
||||||
|
y_train=y_train,
|
||||||
|
X_val=X_val,
|
||||||
|
y_val=y_val,
|
||||||
|
**automl_settings
|
||||||
|
)
|
||||||
|
except requests.exceptions.HTTPError:
|
||||||
|
return
|
||||||
automl = AutoML()
|
automl = AutoML()
|
||||||
automl.retrain_from_log(
|
automl.retrain_from_log(
|
||||||
X_train=X_train,
|
X_train=X_train,
|
||||||
|
|||||||
@ -1,5 +1,6 @@
|
|||||||
import sys
|
import sys
|
||||||
import pytest
|
import pytest
|
||||||
|
import requests
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.skipif(sys.platform == "darwin", reason="do not run on mac os")
|
@pytest.mark.skipif(sys.platform == "darwin", reason="do not run on mac os")
|
||||||
@ -728,13 +729,20 @@ def test_tokenclassification():
|
|||||||
automl_settings["custom_hpo_args"] = {
|
automl_settings["custom_hpo_args"] = {
|
||||||
"model_path": "bert-base-uncased",
|
"model_path": "bert-base-uncased",
|
||||||
"output_dir": "test/data/output/",
|
"output_dir": "test/data/output/",
|
||||||
"ckpt_per_epoch": 5,
|
"ckpt_per_epoch": 1,
|
||||||
"fp16": False,
|
"fp16": False,
|
||||||
}
|
}
|
||||||
|
|
||||||
automl.fit(
|
try:
|
||||||
X_train=X_train, y_train=y_train, X_val=X_val, y_val=y_val, **automl_settings
|
automl.fit(
|
||||||
)
|
X_train=X_train,
|
||||||
|
y_train=y_train,
|
||||||
|
X_val=X_val,
|
||||||
|
y_val=y_val,
|
||||||
|
**automl_settings
|
||||||
|
)
|
||||||
|
except requests.exceptions.HTTPError:
|
||||||
|
return
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|||||||
@ -64,7 +64,7 @@ def _test_xgboost(method="BlendSearch"):
|
|||||||
max_iter = 10
|
max_iter = 10
|
||||||
for num_samples in [128]:
|
for num_samples in [128]:
|
||||||
time_budget_s = 60
|
time_budget_s = 60
|
||||||
for n_cpu in [4]:
|
for n_cpu in [2]:
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
ray.shutdown()
|
ray.shutdown()
|
||||||
ray.init(num_cpus=n_cpu, num_gpus=0)
|
ray.init(num_cpus=n_cpu, num_gpus=0)
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user