doc: API doc example for langchain database tool kit (#5498)

This commit is contained in:
Eric Zhu 2025-02-11 20:15:07 -08:00 committed by GitHub
parent cbc5d0241b
commit 492b106b19
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -19,14 +19,18 @@ class LangChainToolAdapter(BaseTool[BaseModel, Any]):
This class requires the :code:`langchain` extra for the :code:`autogen-ext` package.
.. code-block:: bash
pip install -U "autogen-ext[langchain]"
Args:
langchain_tool (LangChainTool): A LangChain tool to wrap
Examples:
Use the `PythonAstREPLTool` from the `langchain_experimental` package to
create a tool that allows you to interact with a Pandas DataFrame.
Use the `PythonAstREPLTool` from the `langchain_experimental` package to
create a tool that allows you to interact with a Pandas DataFrame.
.. code-block:: python
@ -60,6 +64,82 @@ class LangChainToolAdapter(BaseTool[BaseModel, Any]):
asyncio.run(main())
This example demonstrates how to use the `SQLDatabaseToolkit` from the `langchain_community`
package to interact with an SQLite database.
It uses the :class:`~autogen_agentchat.team.RoundRobinGroupChat` to iterate the single agent over multiple steps.
If you want to one step at a time, you can just call `run_stream` method of the
:class:`~autogen_agentchat.agents.AssistantAgent` class directly.
.. code-block:: python
import asyncio
import sqlite3
import requests
from autogen_agentchat.agents import AssistantAgent
from autogen_agentchat.conditions import TextMentionTermination
from autogen_agentchat.teams import RoundRobinGroupChat
from autogen_agentchat.ui import Console
from autogen_ext.models.openai import OpenAIChatCompletionClient
from autogen_ext.tools.langchain import LangChainToolAdapter
from langchain_community.agent_toolkits.sql.toolkit import SQLDatabaseToolkit
from langchain_community.utilities.sql_database import SQLDatabase
from langchain_openai import ChatOpenAI
from sqlalchemy import Engine, create_engine
from sqlalchemy.pool import StaticPool
def get_engine_for_chinook_db() -> Engine:
url = "https://raw.githubusercontent.com/lerocha/chinook-database/master/ChinookDatabase/DataSources/Chinook_Sqlite.sql"
response = requests.get(url)
sql_script = response.text
connection = sqlite3.connect(":memory:", check_same_thread=False)
connection.executescript(sql_script)
return create_engine(
"sqlite://",
creator=lambda: connection,
poolclass=StaticPool,
connect_args={"check_same_thread": False},
)
async def main() -> None:
# Create the engine and database wrapper.
engine = get_engine_for_chinook_db()
db = SQLDatabase(engine)
# Create the toolkit.
llm = ChatOpenAI(temperature=0)
toolkit = SQLDatabaseToolkit(db=db, llm=llm)
# Create the LangChain tool adapter for every tool in the toolkit.
tools = [LangChainToolAdapter(tool) for tool in toolkit.get_tools()]
# Create the chat completion client.
model_client = OpenAIChatCompletionClient(model="gpt-4o")
# Create the assistant agent.
agent = AssistantAgent(
"assistant",
model_client=model_client,
tools=tools, # type: ignore
model_client_stream=True,
system_message="Respond with 'TERMINATE' if the task is completed.",
)
# Create termination condition.
termination = TextMentionTermination("TERMINATE")
# Create a round-robin group chat to iterate the single agent over multiple steps.
chat = RoundRobinGroupChat([agent], termination_condition=termination)
# Run the chat.
await Console(chat.run_stream(task="Show some tables in the database"))
if __name__ == "__main__":
asyncio.run(main())
"""
def __init__(self, langchain_tool: LangChainTool):