mirror of
https://github.com/microsoft/autogen.git
synced 2025-09-25 16:16:37 +00:00
fix bug in current nlp documentation (#763)
* fix bug in current nlp documentation * fixing nlp documentation bug * fixing nlp documentation bug * fixing nlp documentation bug Co-authored-by: Chi Wang <wang.chi@microsoft.com>
This commit is contained in:
parent
d3e0d1d852
commit
774773eb5b
@ -498,7 +498,7 @@ class AutoML(BaseEstimator):
|
||||
'f1', 'micro_f1', 'macro_f1', 'log_loss', 'mae', 'mse', 'r2',
|
||||
'mape'. Default is 'auto'.
|
||||
If passing a customized metric function, the function needs to
|
||||
have the follwing signature:
|
||||
have the following input arguments:
|
||||
|
||||
```python
|
||||
def custom_metric(
|
||||
@ -2175,7 +2175,7 @@ class AutoML(BaseEstimator):
|
||||
'f1', 'micro_f1', 'macro_f1', 'log_loss', 'mae', 'mse', 'r2',
|
||||
'mape'. Default is 'auto'.
|
||||
If passing a customized metric function, the function needs to
|
||||
have the following signature:
|
||||
have the following input arguments:
|
||||
|
||||
```python
|
||||
def custom_metric(
|
||||
@ -2370,15 +2370,13 @@ class AutoML(BaseEstimator):
|
||||
```
|
||||
|
||||
cv_score_agg_func: customized cross-validation scores aggregate function. Default to average metrics across folds. If specificed, this function needs to
|
||||
have the following signature:
|
||||
have the following input arguments:
|
||||
|
||||
* val_loss_folds: list of floats, the loss scores of each fold;
|
||||
* log_metrics_folds: list of dicts/floats, the metrics of each fold to log.
|
||||
|
||||
```python
|
||||
def cv_score_agg_func(val_loss_folds, log_metrics_folds):
|
||||
return metric_to_minimize, metrics_to_log
|
||||
```
|
||||
“val_loss_folds” - list of floats, the loss scores of each fold; “log_metrics_folds” - list of dicts/floats, the metrics of each fold to log.
|
||||
This function should return the final aggregate result of all folds. A float number of the minimization objective, and a dictionary as the metrics to log or None.
|
||||
E.g.,
|
||||
E.g.,
|
||||
|
||||
```python
|
||||
def cv_score_agg_func(val_loss_folds, log_metrics_folds):
|
||||
@ -2393,16 +2391,16 @@ class AutoML(BaseEstimator):
|
||||
metrics_to_log += single_fold
|
||||
if metrics_to_log:
|
||||
n = len(val_loss_folds)
|
||||
metrics_to_log = {k: v / n for k, v in metrics_to_log.items()} if isinstance(metrics_to_log, dict) else metrics_to_log / n
|
||||
metrics_to_log = (
|
||||
{k: v / n for k, v in metrics_to_log.items()}
|
||||
if isinstance(metrics_to_log, dict)
|
||||
else metrics_to_log / n
|
||||
)
|
||||
return metric_to_minimize, metrics_to_log
|
||||
```
|
||||
|
||||
skip_transform: boolean, default=False | Whether to pre-process data prior to modeling.
|
||||
fit_kwargs_by_estimator: dict, default=None | The user specified keywords arguments, grouped by estimator name.
|
||||
For TransformersEstimator, available fit_kwargs can be found from
|
||||
[TrainingArgumentsForAuto](nlp/huggingface/training_args).
|
||||
e.g.,
|
||||
skip_transform: boolean, default=False | Whether to pre-process data prior to modeling.
|
||||
fit_kwargs_by_estimator: dict, default=None | The user specified keywords arguments, grouped by estimator name.
|
||||
For TransformersEstimator, available fit_kwargs can be found from
|
||||
[TrainingArgumentsForAuto](nlp/huggingface/training_args).
|
||||
e.g.,
|
||||
|
Loading…
x
Reference in New Issue
Block a user