diff --git a/flaml/tune/README.md b/flaml/tune/README.md index 6b7e0b93a..c2b3fced3 100644 --- a/flaml/tune/README.md +++ b/flaml/tune/README.md @@ -1,9 +1,9 @@ # Economical Hyperparameter Optimization `flaml.tune` is a module for economical hyperparameter tuning. It frees users from manually tuning many hyperparameters for a software, such as machine learning training procedures. -The API is compatible with ray tune. +It can be used standalone, or together with ray tune or nni. -Example: +* Example for sequential tuning (recommended when compute resource is limited and each trial can consume all the resources): ```python # require: pip install flaml[blendsearch] @@ -41,7 +41,8 @@ print(analysis.best_trial.last_result) # the best trial's result print(analysis.best_config) # the best config ``` -Or, using ray tune's API: +* Example for using ray tune's API: + ```python # require: pip install flaml[blendsearch] ray[tune] from ray import tune as raytune @@ -71,14 +72,19 @@ analysis = raytune.run( time_budget_s=60, # the time budget in seconds local_dir='logs/', # the local directory to store logs search_alg=CFO(points_to_evaluate=[{'x':1}]) # or BlendSearch - # other algo example: raytune.create_searcher('optuna'), ) print(analysis.best_trial.last_result) # the best trial's result print(analysis.best_config) # the best config ``` -For more examples, please check out +* Example for using NNI: An example of using BlendSearch with NNI can be seen in [test](https://github.com/microsoft/FLAML/tree/main/test/nni). CFO can be used as well in a similar manner. To run the example, first make sure you have [NNI](https://nni.readthedocs.io/en/stable/) installed, then run: + +```shell +$nnictl create --config ./config.yml +``` + +* For more examples, please check out [notebooks](https://github.com/microsoft/FLAML/tree/main/notebook/). @@ -159,12 +165,6 @@ Recommended scenario: cost-related hyperparameters exist, a low-cost initial point is known, and the search space is complex such that local search is prone to be stuck at local optima. -An example of using BlendSearch with NNI can be seen in [test](https://github.com/microsoft/FLAML/tree/main/test/nni), CFO can be used with NNI as well in a similar manner. To run the example, first make sure you have [NNI](https://nni.readthedocs.io/en/stable/) installed, then run: - -```shell -$nnictl create --config ./config.yml -``` - For more technical details, please check our papers. * [Frugal Optimization for Cost-related Hyperparameters](https://arxiv.org/abs/2005.01571). Qingyun Wu, Chi Wang, Silu Huang. AAAI 2021.