mirror of
https://github.com/microsoft/autogen.git
synced 2025-09-26 16:51:39 +00:00
example (#49)
This commit is contained in:
parent
b058e0e041
commit
8bcdb2a0c2
@ -1,9 +1,9 @@
|
|||||||
# Economical Hyperparameter Optimization
|
# Economical Hyperparameter Optimization
|
||||||
|
|
||||||
`flaml.tune` is a module for economical hyperparameter tuning. It frees users from manually tuning many hyperparameters for a software, such as machine learning training procedures.
|
`flaml.tune` is a module for economical hyperparameter tuning. It frees users from manually tuning many hyperparameters for a software, such as machine learning training procedures.
|
||||||
The API is compatible with ray tune.
|
It can be used standalone, or together with ray tune or nni.
|
||||||
|
|
||||||
Example:
|
* Example for sequential tuning (recommended when compute resource is limited and each trial can consume all the resources):
|
||||||
|
|
||||||
```python
|
```python
|
||||||
# require: pip install flaml[blendsearch]
|
# require: pip install flaml[blendsearch]
|
||||||
@ -41,7 +41,8 @@ print(analysis.best_trial.last_result) # the best trial's result
|
|||||||
print(analysis.best_config) # the best config
|
print(analysis.best_config) # the best config
|
||||||
```
|
```
|
||||||
|
|
||||||
Or, using ray tune's API:
|
* Example for using ray tune's API:
|
||||||
|
|
||||||
```python
|
```python
|
||||||
# require: pip install flaml[blendsearch] ray[tune]
|
# require: pip install flaml[blendsearch] ray[tune]
|
||||||
from ray import tune as raytune
|
from ray import tune as raytune
|
||||||
@ -71,14 +72,19 @@ analysis = raytune.run(
|
|||||||
time_budget_s=60, # the time budget in seconds
|
time_budget_s=60, # the time budget in seconds
|
||||||
local_dir='logs/', # the local directory to store logs
|
local_dir='logs/', # the local directory to store logs
|
||||||
search_alg=CFO(points_to_evaluate=[{'x':1}]) # or BlendSearch
|
search_alg=CFO(points_to_evaluate=[{'x':1}]) # or BlendSearch
|
||||||
# other algo example: raytune.create_searcher('optuna'),
|
|
||||||
)
|
)
|
||||||
|
|
||||||
print(analysis.best_trial.last_result) # the best trial's result
|
print(analysis.best_trial.last_result) # the best trial's result
|
||||||
print(analysis.best_config) # the best config
|
print(analysis.best_config) # the best config
|
||||||
```
|
```
|
||||||
|
|
||||||
For more examples, please check out
|
* Example for using NNI: An example of using BlendSearch with NNI can be seen in [test](https://github.com/microsoft/FLAML/tree/main/test/nni). CFO can be used as well in a similar manner. To run the example, first make sure you have [NNI](https://nni.readthedocs.io/en/stable/) installed, then run:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
$nnictl create --config ./config.yml
|
||||||
|
```
|
||||||
|
|
||||||
|
* For more examples, please check out
|
||||||
[notebooks](https://github.com/microsoft/FLAML/tree/main/notebook/).
|
[notebooks](https://github.com/microsoft/FLAML/tree/main/notebook/).
|
||||||
|
|
||||||
|
|
||||||
@ -159,12 +165,6 @@ Recommended scenario: cost-related hyperparameters exist, a low-cost
|
|||||||
initial point is known, and the search space is complex such that local search
|
initial point is known, and the search space is complex such that local search
|
||||||
is prone to be stuck at local optima.
|
is prone to be stuck at local optima.
|
||||||
|
|
||||||
An example of using BlendSearch with NNI can be seen in [test](https://github.com/microsoft/FLAML/tree/main/test/nni), CFO can be used with NNI as well in a similar manner. To run the example, first make sure you have [NNI](https://nni.readthedocs.io/en/stable/) installed, then run:
|
|
||||||
|
|
||||||
```shell
|
|
||||||
$nnictl create --config ./config.yml
|
|
||||||
```
|
|
||||||
|
|
||||||
For more technical details, please check our papers.
|
For more technical details, please check our papers.
|
||||||
|
|
||||||
* [Frugal Optimization for Cost-related Hyperparameters](https://arxiv.org/abs/2005.01571). Qingyun Wu, Chi Wang, Silu Huang. AAAI 2021.
|
* [Frugal Optimization for Cost-related Hyperparameters](https://arxiv.org/abs/2005.01571). Qingyun Wu, Chi Wang, Silu Huang. AAAI 2021.
|
||||||
|
Loading…
x
Reference in New Issue
Block a user