mirror of
https://github.com/microsoft/autogen.git
synced 2025-11-02 18:59:48 +00:00
parent
beb10273e8
commit
9bf13d66f1
@ -23,4 +23,4 @@ ENV DEBIAN_FRONTEND=dialog
|
||||
RUN pip3 --disable-pip-version-check --no-cache-dir install flaml[test,notebook]
|
||||
# For docs
|
||||
RUN npm install --global yarn
|
||||
RUN pip install pydoc-markdown
|
||||
RUN pip install pydoc-markdown==4.5.0
|
||||
|
||||
@ -623,7 +623,7 @@ class AutoML(BaseEstimator):
|
||||
seed: int or None, default=None | The random seed for hpo.
|
||||
n_concurrent_trials: [Experimental] int, default=1 | The number of
|
||||
concurrent trials. When n_concurrent_trials > 1, flaml performes
|
||||
[parallel tuning](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML#parallel-tuning)
|
||||
[parallel tuning](../Use-Cases/Task-Oriented-AutoML#parallel-tuning)
|
||||
and installation of ray is required: `pip install flaml[ray]`.
|
||||
keep_search_state: boolean, default=False | Whether to keep data needed
|
||||
for model search after fit(). By default the state is deleted for
|
||||
@ -651,7 +651,7 @@ class AutoML(BaseEstimator):
|
||||
the metrics_to_log dictionary returned by a customized metric function.
|
||||
The customized metric function shall be provided via the `metric` key word
|
||||
argument of the fit() function or the automl constructor.
|
||||
Find an example in the 4th constraint type in this [doc](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML#constraint).
|
||||
Find an example in the 4th constraint type in this [doc](../Use-Cases/Task-Oriented-AutoML#constraint).
|
||||
If `pred_time_limit` is provided as one of keyword arguments to fit() function or
|
||||
the automl constructor, flaml will automatically (and under the hood)
|
||||
add it as an additional element in the metric_constraints. Essentially 'pred_time_limit'
|
||||
@ -2203,7 +2203,7 @@ class AutoML(BaseEstimator):
|
||||
seed: int or None, default=None | The random seed for hpo.
|
||||
n_concurrent_trials: [Experimental] int, default=1 | The number of
|
||||
concurrent trials. When n_concurrent_trials > 1, flaml performes
|
||||
[parallel tuning](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML#parallel-tuning)
|
||||
[parallel tuning](../Use-Cases/Task-Oriented-AutoML#parallel-tuning)
|
||||
and installation of ray is required: `pip install flaml[ray]`.
|
||||
keep_search_state: boolean, default=False | Whether to keep data needed
|
||||
for model search after fit(). By default the state is deleted for
|
||||
@ -2255,7 +2255,7 @@ class AutoML(BaseEstimator):
|
||||
|
||||
fit_kwargs_by_estimator: dict, default=None | The user specified keywords arguments, grouped by estimator name.
|
||||
For TransformersEstimator, available fit_kwargs can be found from
|
||||
[flaml/nlp/training_args.py:TrainingArgumentsForAuto](https://microsoft.github.io/FLAML/docs/reference/nlp/huggingface/training_args).
|
||||
[TrainingArgumentsForAuto](nlp/huggingface/training_args).
|
||||
e.g.,
|
||||
|
||||
```python
|
||||
|
||||
@ -286,7 +286,7 @@ def run(
|
||||
resources_per_trial: A dictionary of the hardware resources to allocate
|
||||
per trial, e.g., `{'cpu': 1}`. It is only valid when using ray backend
|
||||
(by setting 'use_ray = True'). It shall be used when you need to do
|
||||
[parallel tuning](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function#parallel-tuning).
|
||||
[parallel tuning](../../Use-Cases/Tune-User-Defined-Function#parallel-tuning).
|
||||
config_constraints: A list of config constraints to be satisfied.
|
||||
e.g., ```config_constraints = [(mem_size, '<=', 1024**3)]```
|
||||
|
||||
|
||||
@ -82,7 +82,7 @@ Then:
|
||||
|
||||
```console
|
||||
npm install --global yarn # skip if you use the dev container we provided
|
||||
pip install pydoc-markdown # skip if you use the dev container we provided
|
||||
pip install pydoc-markdown==4.5.0 # skip if you use the dev container we provided
|
||||
cd website
|
||||
yarn install --frozen-lockfile
|
||||
pydoc-markdown
|
||||
|
||||
@ -307,7 +307,7 @@ automl.fit(X_train, y_train, max_iter=100, train_time_limit=1, pred_time_limit=1
|
||||
|
||||
4. Constraints on the metrics of the ML model tried in AutoML.
|
||||
|
||||
When users provide a [custom metric function](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML#optimization-metric), which returns a primary optimization metric and a dictionary of additional metrics (typically also about the model) to log, users can also specify constraints on one or more of the metrics in the dictionary of additional metrics.
|
||||
When users provide a [custom metric function](#optimization-metric), which returns a primary optimization metric and a dictionary of additional metrics (typically also about the model) to log, users can also specify constraints on one or more of the metrics in the dictionary of additional metrics.
|
||||
|
||||
Users need to provide a list of such constraints in the following format:
|
||||
Each element in this list is a 3-tuple, which shall be expressed
|
||||
@ -395,7 +395,7 @@ automl2 = AutoML()
|
||||
automl2.fit(X_train, y_train, time_budget=7200, starting_points=automl1.best_config_per_estimator)
|
||||
```
|
||||
|
||||
`starting_points` is a dictionary or a str to specify the starting hyperparameter config. (1) When it is a dictionary, the keys are the estimator names. If you do not need to specify starting points for an estimator, exclude its name from the dictionary. The value for each key can be either a dictionary of a list of dictionaries, corresponding to one hyperparameter configuration, or multiple hyperparameter configurations, respectively. (2) When it is a str: if "data", use data-dependent defaults; if "data:path", use data-dependent defaults which are stored at path; if "static", use data-independent defaults. Please find more details about data-dependent defaults in [zero shot AutoML](https://microsoft.github.io/FLAML/docs/Use-Cases/Zero-Shot-AutoML#combine-zero-shot-automl-and-hyperparameter-tuning).
|
||||
`starting_points` is a dictionary or a str to specify the starting hyperparameter config. (1) When it is a dictionary, the keys are the estimator names. If you do not need to specify starting points for an estimator, exclude its name from the dictionary. The value for each key can be either a dictionary of a list of dictionaries, corresponding to one hyperparameter configuration, or multiple hyperparameter configurations, respectively. (2) When it is a str: if "data", use data-dependent defaults; if "data:path", use data-dependent defaults which are stored at path; if "static", use data-independent defaults. Please find more details about data-dependent defaults in [zero shot AutoML](Zero-Shot-AutoML#combine-zero-shot-automl-and-hyperparameter-tuning).
|
||||
|
||||
|
||||
### Log the trials
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user