mirror of
https://github.com/microsoft/autogen.git
synced 2025-09-09 00:06:01 +00:00
sample_weight; dependency; notebook
This commit is contained in:
parent
d18d292081
commit
bd16eeee69
@ -402,7 +402,7 @@ class AutoML:
|
|||||||
self._X_train_all, self._y_train_all = \
|
self._X_train_all, self._y_train_all = \
|
||||||
self._transformer.fit_transform(X, y, self._state.task)
|
self._transformer.fit_transform(X, y, self._state.task)
|
||||||
self._label_transformer = self._transformer.label_transformer
|
self._label_transformer = self._transformer.label_transformer
|
||||||
|
self._sample_weight_full = self._state.fit_kwargs.get('sample_weight')
|
||||||
if X_val is not None and y_val is not None:
|
if X_val is not None and y_val is not None:
|
||||||
if not (isinstance(X_val, np.ndarray) or
|
if not (isinstance(X_val, np.ndarray) or
|
||||||
issparse(X_val) or
|
issparse(X_val) or
|
||||||
@ -446,7 +446,8 @@ class AutoML:
|
|||||||
self._X_train_all, self._y_train_all
|
self._X_train_all, self._y_train_all
|
||||||
if issparse(X_train_all):
|
if issparse(X_train_all):
|
||||||
X_train_all = X_train_all.tocsr()
|
X_train_all = X_train_all.tocsr()
|
||||||
if self._state.task != 'regression':
|
if self._state.task != 'regression' and self._state.fit_kwargs.get(
|
||||||
|
'sample_weight') is None:
|
||||||
# logger.info(f"label {pd.unique(y_train_all)}")
|
# logger.info(f"label {pd.unique(y_train_all)}")
|
||||||
label_set, counts = np.unique(y_train_all, return_counts=True)
|
label_set, counts = np.unique(y_train_all, return_counts=True)
|
||||||
# augment rare classes
|
# augment rare classes
|
||||||
@ -1151,7 +1152,11 @@ class AutoML:
|
|||||||
stacker = Stacker(estimators, best_m,
|
stacker = Stacker(estimators, best_m,
|
||||||
n_jobs=self._state.n_jobs,
|
n_jobs=self._state.n_jobs,
|
||||||
passthrough=True)
|
passthrough=True)
|
||||||
stacker.fit(self._X_train_all, self._y_train_all)
|
if self._sample_weight_full is not None:
|
||||||
|
self._state.fit_kwargs[
|
||||||
|
'sample_weight'] = self._sample_weight_full
|
||||||
|
stacker.fit(self._X_train_all, self._y_train_all,
|
||||||
|
**self._state.fit_kwargs)
|
||||||
logger.info(f'ensemble: {stacker}')
|
logger.info(f'ensemble: {stacker}')
|
||||||
self._trained_estimator = stacker
|
self._trained_estimator = stacker
|
||||||
self._trained_estimator.model = stacker
|
self._trained_estimator.model = stacker
|
||||||
|
@ -146,6 +146,7 @@ based on optimism in face of uncertainty.
|
|||||||
Example:
|
Example:
|
||||||
|
|
||||||
```python
|
```python
|
||||||
|
# requirements: pip install flaml[blendsearch]
|
||||||
from flaml import BlendSearch
|
from flaml import BlendSearch
|
||||||
tune.run(...
|
tune.run(...
|
||||||
search_alg = BlendSearch(points_to_evaluate=[init_config]),
|
search_alg = BlendSearch(points_to_evaluate=[init_config]),
|
||||||
|
@ -1 +1 @@
|
|||||||
__version__ = "0.2.3"
|
__version__ = "0.2.4"
|
||||||
|
@ -6,11 +6,16 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"This notebook uses the Huggingface transformers library to finetune a transformer model.\n",
|
"This notebook uses the Huggingface transformers library to finetune a transformer model.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"**Requirements.** This notebook has additional requirements:\n",
|
"**Requirements.** This notebook has additional requirements:"
|
||||||
"\n",
|
]
|
||||||
"```bash\n",
|
},
|
||||||
"pip install -r transformers_requirements.txt\n",
|
{
|
||||||
"```"
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"!pip install torch transformers datasets ipywidgets"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -699,7 +704,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"### Step 3. Launch with `flaml.tune.run`\n",
|
"### Step 3. Launch with `flaml.tune.run`\n",
|
||||||
"\n",
|
"\n",
|
||||||
"We are now ready to laungh the tuning using `flaml.tune.run`:"
|
"We are now ready to launch the tuning using `flaml.tune.run`:"
|
||||||
],
|
],
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {}
|
"metadata": {}
|
||||||
@ -766,9 +771,13 @@
|
|||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"kernelspec": {
|
"kernelspec": {
|
||||||
"display_name": "flaml",
|
"name": "python3",
|
||||||
"language": "python",
|
"display_name": "Python 3.7.7 64-bit ('flaml': conda)",
|
||||||
"name": "flaml"
|
"metadata": {
|
||||||
|
"interpreter": {
|
||||||
|
"hash": "bfcd9a6a9254a5e160761a1fd7a9e444f011592c6770d9f4180dde058a9df5dd"
|
||||||
|
}
|
||||||
|
}
|
||||||
},
|
},
|
||||||
"language_info": {
|
"language_info": {
|
||||||
"codemirror_mode": {
|
"codemirror_mode": {
|
||||||
@ -780,7 +789,7 @@
|
|||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython3",
|
||||||
"version": "3.7.6"
|
"version": "3.7.7-final"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"nbformat": 4,
|
"nbformat": 4,
|
||||||
|
File diff suppressed because one or more lines are too long
@ -1,4 +0,0 @@
|
|||||||
torch
|
|
||||||
transformers
|
|
||||||
datasets
|
|
||||||
ipywidgets
|
|
5
setup.py
5
setup.py
@ -20,7 +20,6 @@ install_requires = [
|
|||||||
"scipy>=1.4.1",
|
"scipy>=1.4.1",
|
||||||
"catboost>=0.23",
|
"catboost>=0.23",
|
||||||
"scikit-learn>=0.23.2",
|
"scikit-learn>=0.23.2",
|
||||||
"optuna==2.3.0"
|
|
||||||
],
|
],
|
||||||
|
|
||||||
|
|
||||||
@ -48,6 +47,10 @@ setuptools.setup(
|
|||||||
"coverage>=5.3",
|
"coverage>=5.3",
|
||||||
"xgboost<1.3",
|
"xgboost<1.3",
|
||||||
"rgf-python",
|
"rgf-python",
|
||||||
|
"optuna==2.3.0",
|
||||||
|
],
|
||||||
|
"blendsearch": [
|
||||||
|
"optuna==2.3.0"
|
||||||
],
|
],
|
||||||
"ray": [
|
"ray": [
|
||||||
"ray[tune]==1.1.0",
|
"ray[tune]==1.1.0",
|
||||||
|
@ -1,3 +1,5 @@
|
|||||||
|
'''Require: pip install torchvision ray
|
||||||
|
'''
|
||||||
import unittest
|
import unittest
|
||||||
import os
|
import os
|
||||||
import time
|
import time
|
||||||
|
@ -1,5 +1,6 @@
|
|||||||
|
'''Require: pip install flaml[test,ray]
|
||||||
|
'''
|
||||||
import unittest
|
import unittest
|
||||||
import os
|
|
||||||
import time
|
import time
|
||||||
from sklearn.model_selection import train_test_split
|
from sklearn.model_selection import train_test_split
|
||||||
import sklearn.metrics
|
import sklearn.metrics
|
||||||
@ -138,6 +139,7 @@ def _test_xgboost(method='BlendSearch'):
|
|||||||
scheduler=scheduler, search_alg=algo)
|
scheduler=scheduler, search_alg=algo)
|
||||||
ray.shutdown()
|
ray.shutdown()
|
||||||
# # Load the best model checkpoint
|
# # Load the best model checkpoint
|
||||||
|
# import os
|
||||||
# best_bst = xgb.Booster()
|
# best_bst = xgb.Booster()
|
||||||
# best_bst.load_model(os.path.join(analysis.best_checkpoint,
|
# best_bst.load_model(os.path.join(analysis.best_checkpoint,
|
||||||
# "model.xgb"))
|
# "model.xgb"))
|
||||||
|
Loading…
x
Reference in New Issue
Block a user