mirror of
https://github.com/microsoft/autogen.git
synced 2025-09-07 07:17:10 +00:00
Updated readme.md : seprated AutoGen and EcoOptGen also removed bibtex (#43)
* Updated README.md added required changes to previous pull new changes : 1. A section containing citation to AutoGen and EcoOptiGen 2. Another section contain citation to MathChat ## Citation [AutoGen](https://arxiv.org/abs/2308.08155). AND [EcoOptiGen](https://arxiv.org/abs/2303.04673). ``` bibtex @inproceedings{wu2023autogen, title={AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation Framework}, author={Qingyun Wu and Gagan Bansal and Jieyu Zhang and Yiran Wu and Shaokun Zhang and Erkang Zhu and Beibin Li and Li Jiang and Xiaoyun Zhang and Chi Wang}, year={2023}, eprint={2308.08155}, archivePrefix={arXiv}, primaryClass={cs.AI} } bibtex @inproceedings{wang2023EcoOptiGen, title={Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference}, author={Chi Wang and Susan Xueqing Liu and Ahmed H. Awadallah}, year={2023}, booktitle={AutoML'23}, } ``` [MathChat](https://arxiv.org/abs/2306.01337). ``` bibtex @inproceedings{wu2023empirical, title={An Empirical Study on Challenging Math Problem Solving with GPT-4}, author={Yiran Wu and Feiran Jia and Shaokun Zhang and Hangyu Li and Erkang Zhu and Yue Wang and Yin Tat Lee and Richard Peng and Qingyun Wu and Chi Wang}, year={2023}, booktitle={ArXiv preprint arXiv:2306.01337}, } ``` * Seperated AutoGen and EcoOptGen and removed 'bibtex' ## Citation [AutoGen](https://arxiv.org/abs/2308.08155). ``` @inproceedings{wu2023autogen, title={AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation Framework}, author={Qingyun Wu and Gagan Bansal and Jieyu Zhang and Yiran Wu and Shaokun Zhang and Erkang Zhu and Beibin Li and Li Jiang and Xiaoyun Zhang and Chi Wang}, year={2023}, eprint={2308.08155}, archivePrefix={arXiv}, primaryClass={cs.AI} } ``` [EcoOptiGen](https://arxiv.org/abs/2303.04673). ``` @inproceedings{wang2023EcoOptiGen, title={Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference}, author={Chi Wang and Susan Xueqing Liu and Ahmed H. Awadallah}, year={2023}, booktitle={AutoML'23}, } ```
This commit is contained in:
parent
c39bfcaa6e
commit
bf65b59b79
37
README.md
37
README.md
@ -148,3 +148,40 @@ Privacy information can be found at https://privacy.microsoft.com/en-us/
|
||||
|
||||
Microsoft and any contributors reserve all other rights, whether under their respective copyrights, patents,
|
||||
or trademarks, whether by implication, estoppel or otherwise.
|
||||
|
||||
|
||||
## Citation
|
||||
[AutoGen](https://arxiv.org/abs/2308.08155).
|
||||
```
|
||||
@inproceedings{wu2023autogen,
|
||||
title={AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation Framework},
|
||||
author={Qingyun Wu and Gagan Bansal and Jieyu Zhang and Yiran Wu and Shaokun Zhang and Erkang Zhu and Beibin Li and Li Jiang and Xiaoyun Zhang and Chi Wang},
|
||||
year={2023},
|
||||
eprint={2308.08155},
|
||||
archivePrefix={arXiv},
|
||||
primaryClass={cs.AI}
|
||||
}
|
||||
```
|
||||
|
||||
[EcoOptiGen](https://arxiv.org/abs/2303.04673).
|
||||
```
|
||||
@inproceedings{wang2023EcoOptiGen,
|
||||
title={Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference},
|
||||
author={Chi Wang and Susan Xueqing Liu and Ahmed H. Awadallah},
|
||||
year={2023},
|
||||
booktitle={AutoML'23},
|
||||
}
|
||||
```
|
||||
|
||||
[MathChat](https://arxiv.org/abs/2306.01337).
|
||||
|
||||
```
|
||||
@inproceedings{wu2023empirical,
|
||||
title={An Empirical Study on Challenging Math Problem Solving with GPT-4},
|
||||
author={Yiran Wu and Feiran Jia and Shaokun Zhang and Hangyu Li and Erkang Zhu and Yue Wang and Yin Tat Lee and Richard Peng and Qingyun Wu and Chi Wang},
|
||||
year={2023},
|
||||
booktitle={ArXiv preprint arXiv:2306.01337},
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user