diff --git a/test/automl/test_regression.py b/test/automl/test_regression.py index 5e302e9fd..0a02388fa 100644 --- a/test/automl/test_regression.py +++ b/test/automl/test_regression.py @@ -34,7 +34,7 @@ class MyXGB2(XGBoostEstimator): class TestRegression(unittest.TestCase): def test_regression(self): - automl_experiment = AutoML() + automl = AutoML() automl_settings = { "time_budget": 2, "task": "regression", @@ -45,22 +45,23 @@ class TestRegression(unittest.TestCase): } X_train, y_train = fetch_california_housing(return_X_y=True) n = int(len(y_train) * 9 // 10) - automl_experiment.fit( + automl.fit( X_train=X_train[:n], y_train=y_train[:n], X_val=X_train[n:], y_val=y_train[n:], **automl_settings ) - assert automl_experiment._state.eval_method == "holdout" - print(automl_experiment.predict(X_train)) - print(automl_experiment.model) - print(automl_experiment.config_history) - print(automl_experiment.best_model_for_estimator("xgboost")) - print(automl_experiment.best_iteration) - print(automl_experiment.best_estimator) + assert automl._state.eval_method == "holdout" + y_pred = automl.predict(X_train) + print(y_pred) + print(automl.model.estimator) + print(automl.config_history) + print(automl.best_model_for_estimator("xgboost")) + print(automl.best_iteration) + print(automl.best_estimator) print(get_output_from_log(automl_settings["log_file_name"], 1)) - automl_experiment.retrain_from_log( + automl.retrain_from_log( task="regression", log_file_name=automl_settings["log_file_name"], X_train=X_train, @@ -68,14 +69,24 @@ class TestRegression(unittest.TestCase): train_full=True, time_budget=1, ) - automl_experiment.retrain_from_log( + automl.retrain_from_log( task="regression", log_file_name=automl_settings["log_file_name"], X_train=X_train, y_train=y_train, - train_full=True, time_budget=0, ) + automl = AutoML() + automl.retrain_from_log( + task="regression", + log_file_name=automl_settings["log_file_name"], + X_train=X_train[:n], + y_train=y_train[:n], + train_full=True, + ) + print(automl.model.estimator) + y_pred2 = automl.predict(X_train) + assert (y_pred == y_pred2).all() def test_sparse_matrix_regression(self): X_train = scipy.sparse.random(300, 900, density=0.0001)