mirror of
https://github.com/microsoft/autogen.git
synced 2025-11-30 17:10:54 +00:00
Simplify lgbm example (#358)
* simplify lgbm examples * provide link to lgbm example script. * simply lgbm example in the example script. Co-authored-by: Chi Wang <wang.chi@microsoft.com>
This commit is contained in:
parent
dcfd218108
commit
c6c0c29769
@ -13,9 +13,8 @@ train_x, test_x, train_y, test_y = train_test_split(data, target, test_size=0.25
|
|||||||
|
|
||||||
def train_breast_cancer(config):
|
def train_breast_cancer(config):
|
||||||
params = LGBMEstimator(**config).params
|
params = LGBMEstimator(**config).params
|
||||||
num_boost_round = params.pop("n_estimators")
|
|
||||||
train_set = lgb.Dataset(train_x, label=train_y)
|
train_set = lgb.Dataset(train_x, label=train_y)
|
||||||
gbm = lgb.train(params, train_set, num_boost_round)
|
gbm = lgb.train(params, train_set)
|
||||||
preds = gbm.predict(test_x)
|
preds = gbm.predict(test_x)
|
||||||
pred_labels = np.rint(preds)
|
pred_labels = np.rint(preds)
|
||||||
tune.report(
|
tune.report(
|
||||||
|
|||||||
@ -14,10 +14,9 @@ X_train, X_test, y_train, y_test = train_test_split(
|
|||||||
def train_lgbm(config: dict) -> dict:
|
def train_lgbm(config: dict) -> dict:
|
||||||
# convert config dict to lgbm params
|
# convert config dict to lgbm params
|
||||||
params = LGBMEstimator(**config).params
|
params = LGBMEstimator(**config).params
|
||||||
num_boost_round = params.pop("n_estimators")
|
|
||||||
# train the model
|
# train the model
|
||||||
train_set = lightgbm.Dataset(X_train, y_train)
|
train_set = lightgbm.Dataset(X_train, y_train)
|
||||||
model = lightgbm.train(params, train_set, num_boost_round)
|
model = lightgbm.train(params, train_set)
|
||||||
# evaluate the model
|
# evaluate the model
|
||||||
pred = model.predict(X_test)
|
pred = model.predict(X_test)
|
||||||
mse = mean_squared_error(y_test, pred)
|
mse = mean_squared_error(y_test, pred)
|
||||||
|
|||||||
@ -49,10 +49,9 @@ from flaml.model import LGBMEstimator
|
|||||||
def train_lgbm(config: dict) -> dict:
|
def train_lgbm(config: dict) -> dict:
|
||||||
# convert config dict to lgbm params
|
# convert config dict to lgbm params
|
||||||
params = LGBMEstimator(**config).params
|
params = LGBMEstimator(**config).params
|
||||||
num_boost_round = params.pop("n_estimators")
|
|
||||||
# train the model
|
# train the model
|
||||||
train_set = lightgbm.Dataset(X_train, y_train)
|
train_set = lightgbm.Dataset(X_train, y_train)
|
||||||
model = lightgbm.train(params, train_set, num_boost_round)
|
model = lightgbm.train(params, train_set)
|
||||||
# evaluate the model
|
# evaluate the model
|
||||||
pred = model.predict(X_test)
|
pred = model.predict(X_test)
|
||||||
mse = mean_squared_error(y_test, pred)
|
mse = mean_squared_error(y_test, pred)
|
||||||
@ -75,6 +74,7 @@ analysis = tune.run(
|
|||||||
low_cost_partial_config=low_cost_partial_config, time_budget_s=3, num_samples=-1,
|
low_cost_partial_config=low_cost_partial_config, time_budget_s=3, num_samples=-1,
|
||||||
)
|
)
|
||||||
```
|
```
|
||||||
|
Please see this [script](https://github.com/microsoft/FLAML/blob/main/test/tune.py) for the complete version of the above example.
|
||||||
|
|
||||||
### Where to Go Next?
|
### Where to Go Next?
|
||||||
|
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user