mirror of
https://github.com/microsoft/autogen.git
synced 2025-11-02 10:50:03 +00:00
Merge pull request #669 from skzhang1/cv_strategy
Support customized cross-validation strategy
This commit is contained in:
commit
da2ae83765
@ -366,6 +366,7 @@ class AutoMLState:
|
||||
state.best_loss,
|
||||
state.n_jobs,
|
||||
state.learner_classes.get(estimator),
|
||||
state.cv_score_agg_func,
|
||||
state.log_training_metric,
|
||||
this_estimator_kwargs,
|
||||
)
|
||||
@ -734,6 +735,7 @@ class AutoML(BaseEstimator):
|
||||
settings["min_sample_size"] = settings.get("min_sample_size", MIN_SAMPLE_TRAIN)
|
||||
settings["use_ray"] = settings.get("use_ray", False)
|
||||
settings["metric_constraints"] = settings.get("metric_constraints", [])
|
||||
settings["cv_score_agg_func"] = settings.get("cv_score_agg_func", None)
|
||||
settings["fit_kwargs_by_estimator"] = settings.get(
|
||||
"fit_kwargs_by_estimator", {}
|
||||
)
|
||||
@ -2144,6 +2146,7 @@ class AutoML(BaseEstimator):
|
||||
use_ray=None,
|
||||
metric_constraints=None,
|
||||
custom_hp=None,
|
||||
cv_score_agg_func=None,
|
||||
skip_transform=None,
|
||||
fit_kwargs_by_estimator=None,
|
||||
**fit_kwargs,
|
||||
@ -2366,6 +2369,38 @@ class AutoML(BaseEstimator):
|
||||
}
|
||||
```
|
||||
|
||||
cv_score_agg_func: customized cross-validation scores aggregate function. Default to average metrics across folds. If specificed, this function needs to
|
||||
have the following signature:
|
||||
|
||||
```python
|
||||
def cv_score_agg_func(val_loss_folds, log_metrics_folds):
|
||||
return metric_to_minimize, metrics_to_log
|
||||
```
|
||||
“val_loss_folds” - list of floats, the loss scores of each fold; “log_metrics_folds” - list of dicts/floats, the metrics of each fold to log.
|
||||
This function should return the final aggregate result of all folds. A float number of the minimization objective, and a dictionary as the metrics to log or None.
|
||||
E.g.,
|
||||
|
||||
```python
|
||||
def cv_score_agg_func(val_loss_folds, log_metrics_folds):
|
||||
metric_to_minimize = sum(val_loss_folds)/len(val_loss_folds)
|
||||
metrics_to_log = None
|
||||
for single_fold in log_metrics_folds:
|
||||
if metrics_to_log is None:
|
||||
metrics_to_log = single_fold
|
||||
elif isinstance(metrics_to_log, dict):
|
||||
metrics_to_log = {k: metrics_to_log[k] + v for k, v in single_fold.items()}
|
||||
else:
|
||||
metrics_to_log += single_fold
|
||||
if metrics_to_log:
|
||||
n = len(val_loss_folds)
|
||||
metrics_to_log = {k: v / n for k, v in metrics_to_log.items()} if isinstance(metrics_to_log, dict) else metrics_to_log / n
|
||||
return metric_to_minimize, metrics_to_log
|
||||
```
|
||||
|
||||
fit_kwargs_by_estimator: dict, default=None | The user specified keywords arguments, grouped by estimator name.
|
||||
For TransformersEstimator, available fit_kwargs can be found from
|
||||
[TrainingArgumentsForAuto](nlp/huggingface/training_args).
|
||||
e.g.,
|
||||
skip_transform: boolean, default=False | Whether to pre-process data prior to modeling.
|
||||
fit_kwargs_by_estimator: dict, default=None | The user specified keywords arguments, grouped by estimator name.
|
||||
For TransformersEstimator, available fit_kwargs can be found from
|
||||
@ -2568,6 +2603,9 @@ class AutoML(BaseEstimator):
|
||||
eval_method = self._decide_eval_method(eval_method, time_budget)
|
||||
self._state.eval_method = eval_method
|
||||
logger.info("Evaluation method: {}".format(eval_method))
|
||||
self._state.cv_score_agg_func = cv_score_agg_func or self._settings.get(
|
||||
"cv_score_agg_func"
|
||||
)
|
||||
|
||||
self._retrain_in_budget = retrain_full == "budget" and (
|
||||
eval_method == "holdout" and self._state.X_val is None
|
||||
|
||||
58
flaml/ml.py
58
flaml/ml.py
@ -431,6 +431,26 @@ def get_val_loss(
|
||||
return val_loss, metric_for_logging, train_time, pred_time
|
||||
|
||||
|
||||
def default_cv_score_agg_func(val_loss_folds, log_metrics_folds):
|
||||
metric_to_minimize = sum(val_loss_folds) / len(val_loss_folds)
|
||||
metrics_to_log = None
|
||||
for single_fold in log_metrics_folds:
|
||||
if metrics_to_log is None:
|
||||
metrics_to_log = single_fold
|
||||
elif isinstance(metrics_to_log, dict):
|
||||
metrics_to_log = {k: metrics_to_log[k] + v for k, v in single_fold.items()}
|
||||
else:
|
||||
metrics_to_log += single_fold
|
||||
if metrics_to_log:
|
||||
n = len(val_loss_folds)
|
||||
metrics_to_log = (
|
||||
{k: v / n for k, v in metrics_to_log.items()}
|
||||
if isinstance(metrics_to_log, dict)
|
||||
else metrics_to_log / n
|
||||
)
|
||||
return metric_to_minimize, metrics_to_log
|
||||
|
||||
|
||||
def evaluate_model_CV(
|
||||
config,
|
||||
estimator,
|
||||
@ -441,15 +461,18 @@ def evaluate_model_CV(
|
||||
task,
|
||||
eval_metric,
|
||||
best_val_loss,
|
||||
cv_score_agg_func=None,
|
||||
log_training_metric=False,
|
||||
fit_kwargs={},
|
||||
):
|
||||
if cv_score_agg_func is None:
|
||||
cv_score_agg_func = default_cv_score_agg_func
|
||||
start_time = time.time()
|
||||
total_val_loss = 0
|
||||
total_metric = None
|
||||
val_loss_folds = []
|
||||
log_metric_folds = []
|
||||
metric = None
|
||||
train_time = pred_time = 0
|
||||
valid_fold_num = total_fold_num = 0
|
||||
total_fold_num = 0
|
||||
n = kf.get_n_splits()
|
||||
X_train_split, y_train_split = X_train_all, y_train_all
|
||||
if task in CLASSIFICATION:
|
||||
@ -471,7 +494,6 @@ def evaluate_model_CV(
|
||||
else:
|
||||
kf = kf.split(X_train_split)
|
||||
rng = np.random.RandomState(2020)
|
||||
val_loss_list = []
|
||||
budget_per_train = budget / n
|
||||
if "sample_weight" in fit_kwargs:
|
||||
weight = fit_kwargs["sample_weight"]
|
||||
@ -514,33 +536,19 @@ def evaluate_model_CV(
|
||||
log_training_metric=log_training_metric,
|
||||
fit_kwargs=fit_kwargs,
|
||||
)
|
||||
if isinstance(metric_i, dict) and "intermediate_results" in metric_i.keys():
|
||||
del metric_i["intermediate_results"]
|
||||
if weight is not None:
|
||||
fit_kwargs["sample_weight"] = weight
|
||||
valid_fold_num += 1
|
||||
total_fold_num += 1
|
||||
total_val_loss += val_loss_i
|
||||
if log_training_metric or not isinstance(eval_metric, str):
|
||||
if isinstance(total_metric, dict):
|
||||
total_metric = {k: total_metric[k] + v for k, v in metric_i.items()}
|
||||
elif total_metric is not None:
|
||||
total_metric += metric_i
|
||||
else:
|
||||
total_metric = metric_i
|
||||
val_loss_folds.append(val_loss_i)
|
||||
log_metric_folds.append(metric_i)
|
||||
train_time += train_time_i
|
||||
pred_time += pred_time_i
|
||||
if valid_fold_num == n:
|
||||
val_loss_list.append(total_val_loss / valid_fold_num)
|
||||
total_val_loss = valid_fold_num = 0
|
||||
elif time.time() - start_time >= budget:
|
||||
val_loss_list.append(total_val_loss / valid_fold_num)
|
||||
if time.time() - start_time >= budget:
|
||||
break
|
||||
val_loss = np.max(val_loss_list)
|
||||
val_loss, metric = cv_score_agg_func(val_loss_folds, log_metric_folds)
|
||||
n = total_fold_num
|
||||
if log_training_metric or not isinstance(eval_metric, str):
|
||||
if isinstance(total_metric, dict):
|
||||
metric = {k: v / n for k, v in total_metric.items()}
|
||||
else:
|
||||
metric = total_metric / n
|
||||
pred_time /= n
|
||||
return val_loss, metric, train_time, pred_time
|
||||
|
||||
@ -562,6 +570,7 @@ def compute_estimator(
|
||||
best_val_loss=np.Inf,
|
||||
n_jobs=1,
|
||||
estimator_class=None,
|
||||
cv_score_agg_func=None,
|
||||
log_training_metric=False,
|
||||
fit_kwargs={},
|
||||
):
|
||||
@ -608,6 +617,7 @@ def compute_estimator(
|
||||
task,
|
||||
eval_metric,
|
||||
best_val_loss,
|
||||
cv_score_agg_func,
|
||||
log_training_metric=log_training_metric,
|
||||
fit_kwargs=fit_kwargs,
|
||||
)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user