mirror of
https://github.com/microsoft/autogen.git
synced 2025-11-01 10:19:46 +00:00
Merge branch 'main' into first_contribution
This commit is contained in:
commit
df5efa5c2d
@ -125,8 +125,7 @@ class BlendSearch(Searcher):
|
||||
objectives in the metric list. If not provided, we use "min" as the default mode for all the objectives.
|
||||
- "targets" (optional): a dictionary to specify the optimization targets on the objectives. The keys are the
|
||||
metric names (provided in "metric"), and the values are the numerical target values.
|
||||
- "tolerances" (optional): a dictionary to specify the optimality tolerances on objectives. The keys are the
|
||||
metric names (provided in "metrics"), and the values are the numerical tolerances values.
|
||||
- "tolerances" (optional): a dictionary to specify the optimality tolerances on objectives. The keys are the metric names (provided in "metrics"), and the values are the absolute/percentage tolerance in the form of numeric/string.
|
||||
E.g.,
|
||||
```python
|
||||
lexico_objectives = {
|
||||
@ -136,6 +135,16 @@ class BlendSearch(Searcher):
|
||||
"targets": {"error_rate": 0.0},
|
||||
}
|
||||
```
|
||||
We also support percentage tolerance.
|
||||
E.g.,
|
||||
```python
|
||||
lexico_objectives = {
|
||||
"metrics": ["error_rate", "pred_time"],
|
||||
"modes": ["min", "min"],
|
||||
"tolerances": {"error_rate": "5%", "pred_time": "0%"},
|
||||
"targets": {"error_rate": 0.0},
|
||||
}
|
||||
```
|
||||
experimental: A bool of whether to use experimental features.
|
||||
"""
|
||||
self._eps = SEARCH_THREAD_EPS
|
||||
|
||||
@ -80,8 +80,7 @@ class FLOW2(Searcher):
|
||||
objectives in the metric list. If not provided, we use "min" as the default mode for all the objectives
|
||||
- "targets" (optional): a dictionary to specify the optimization targets on the objectives. The keys are the
|
||||
metric names (provided in "metric"), and the values are the numerical target values.
|
||||
- "tolerances" (optional): a dictionary to specify the optimality tolerances on objectives. The keys are the
|
||||
metric names (provided in "metrics"), and the values are the numerical tolerances values.
|
||||
- "tolerances" (optional): a dictionary to specify the optimality tolerances on objectives. The keys are the metric names (provided in "metrics"), and the values are the absolute/percentage tolerance in the form of numeric/string.
|
||||
E.g.,
|
||||
```python
|
||||
lexico_objectives = {
|
||||
@ -91,6 +90,16 @@ class FLOW2(Searcher):
|
||||
"targets": {"error_rate": 0.0},
|
||||
}
|
||||
```
|
||||
We also support percentage tolerance.
|
||||
E.g.,
|
||||
```python
|
||||
lexico_objectives = {
|
||||
"metrics": ["error_rate", "pred_time"],
|
||||
"modes": ["min", "min"],
|
||||
"tolerances": {"error_rate": "5%", "pred_time": "0%"},
|
||||
"targets": {"error_rate": 0.0},
|
||||
}
|
||||
```
|
||||
"""
|
||||
if mode:
|
||||
assert mode in ["min", "max"], "`mode` must be 'min' or 'max'."
|
||||
@ -364,14 +373,27 @@ class FLOW2(Searcher):
|
||||
k_values = np.array(self._histories[k_metric])
|
||||
feasible_value = k_values.take(feasible_index)
|
||||
self._f_best[k_metric] = np.min(feasible_value)
|
||||
if not isinstance(self.lexico_objectives["tolerances"][k_metric], str):
|
||||
tolerance_bound = (
|
||||
self._f_best[k_metric]
|
||||
+ self.lexico_objectives["tolerances"][k_metric]
|
||||
)
|
||||
else:
|
||||
assert (
|
||||
self.lexico_objectives["tolerances"][k_metric][-1] == "%"
|
||||
), "String tolerance of {} should use %% as the suffix".format(k_metric)
|
||||
tolerance_bound = self._f_best[k_metric] * (
|
||||
1
|
||||
+ 0.01
|
||||
* float(
|
||||
self.lexico_objectives["tolerances"][k_metric].replace("%", "")
|
||||
)
|
||||
)
|
||||
feasible_index_filter = np.where(
|
||||
feasible_value
|
||||
<= max(
|
||||
[
|
||||
self._f_best[k_metric]
|
||||
+ self.lexico_objectives["tolerances"][k_metric],
|
||||
self.lexico_objectives["targets"][k_metric],
|
||||
]
|
||||
tolerance_bound,
|
||||
self.lexico_objectives["targets"][k_metric],
|
||||
)
|
||||
)[0]
|
||||
feasible_index = feasible_index.take(feasible_index_filter)
|
||||
@ -395,23 +417,31 @@ class FLOW2(Searcher):
|
||||
if k_mode == "min"
|
||||
else -self.lexico_objectives["targets"][k_metric]
|
||||
)
|
||||
if (
|
||||
result[k_metric]
|
||||
< max(
|
||||
[
|
||||
self._f_best[k_metric]
|
||||
+ self.lexico_objectives["tolerances"][k_metric],
|
||||
k_target,
|
||||
]
|
||||
if not isinstance(self.lexico_objectives["tolerances"][k_metric], str):
|
||||
tolerance_bound = (
|
||||
self._f_best[k_metric]
|
||||
+ self.lexico_objectives["tolerances"][k_metric]
|
||||
)
|
||||
) and (
|
||||
else:
|
||||
assert (
|
||||
self.lexico_objectives["tolerances"][k_metric][-1] == "%"
|
||||
), "String tolerance of {} should use %% as the suffix".format(
|
||||
k_metric
|
||||
)
|
||||
tolerance_bound = self._f_best[k_metric] * (
|
||||
1
|
||||
+ 0.01
|
||||
* float(
|
||||
self.lexico_objectives["tolerances"][k_metric].replace(
|
||||
"%", ""
|
||||
)
|
||||
)
|
||||
)
|
||||
if (result[k_metric] < max(tolerance_bound, k_target)) and (
|
||||
self.best_obj[k_metric]
|
||||
< max(
|
||||
[
|
||||
self._f_best[k_metric]
|
||||
+ self.lexico_objectives["tolerances"][k_metric],
|
||||
k_target,
|
||||
]
|
||||
tolerance_bound,
|
||||
k_target,
|
||||
)
|
||||
):
|
||||
continue
|
||||
|
||||
@ -95,14 +95,25 @@ class ExperimentAnalysis(EA):
|
||||
)
|
||||
feasible_value = k_values.take(feasible_index)
|
||||
f_best[k_metric] = np.min(feasible_value)
|
||||
|
||||
feasible_index_filter = np.where(
|
||||
feasible_value
|
||||
<= max(
|
||||
[
|
||||
f_best[k_metric]
|
||||
+ self.lexico_objectives["tolerances"][k_metric],
|
||||
k_target,
|
||||
]
|
||||
f_best[k_metric] + self.lexico_objectives["tolerances"][k_metric]
|
||||
if not isinstance(
|
||||
self.lexico_objectives["tolerances"][k_metric], str
|
||||
)
|
||||
else f_best[k_metric]
|
||||
* (
|
||||
1
|
||||
+ 0.01
|
||||
* float(
|
||||
self.lexico_objectives["tolerances"][k_metric].replace(
|
||||
"%", ""
|
||||
)
|
||||
)
|
||||
),
|
||||
k_target,
|
||||
)
|
||||
)[0]
|
||||
feasible_index = feasible_index.take(feasible_index_filter)
|
||||
@ -405,8 +416,7 @@ def run(
|
||||
objectives in the metric list. If not provided, we use "min" as the default mode for all the objectives.
|
||||
- "targets" (optional): a dictionary to specify the optimization targets on the objectives. The keys are the
|
||||
metric names (provided in "metric"), and the values are the numerical target values.
|
||||
- "tolerances" (optional): a dictionary to specify the optimality tolerances on objectives. The keys are the
|
||||
metric names (provided in "metrics"), and the values are the numerical tolerances values.
|
||||
- "tolerances" (optional): a dictionary to specify the optimality tolerances on objectives. The keys are the metric names (provided in "metrics"), and the values are the absolute/percentage tolerance in the form of numeric/string.
|
||||
E.g.,
|
||||
```python
|
||||
lexico_objectives = {
|
||||
@ -415,6 +425,16 @@ def run(
|
||||
"tolerances": {"error_rate": 0.01, "pred_time": 0.0},
|
||||
"targets": {"error_rate": 0.0},
|
||||
}
|
||||
```
|
||||
We also support percentage tolerance.
|
||||
E.g.,
|
||||
```python
|
||||
lexico_objectives = {
|
||||
"metrics": ["error_rate", "pred_time"],
|
||||
"modes": ["min", "min"],
|
||||
"tolerances": {"error_rate": "5%", "pred_time": "0%"},
|
||||
"targets": {"error_rate": 0.0},
|
||||
}
|
||||
```
|
||||
**ray_args: keyword arguments to pass to ray.tune.run().
|
||||
Only valid when use_ray=True.
|
||||
|
||||
@ -105,9 +105,6 @@ def test_lexiflow():
|
||||
|
||||
lexico_objectives = {}
|
||||
lexico_objectives["metrics"] = ["error_rate", "flops"]
|
||||
lexico_objectives["tolerances"] = {"error_rate": 0.02, "flops": 0.0}
|
||||
lexico_objectives["targets"] = {"error_rate": 0.0, "flops": 0.0}
|
||||
lexico_objectives["modes"] = ["min", "min"]
|
||||
|
||||
search_space = {
|
||||
"n_layers": tune.randint(lower=1, upper=3),
|
||||
@ -129,7 +126,27 @@ def test_lexiflow():
|
||||
"n_epoch": 1,
|
||||
}
|
||||
|
||||
# Non lexico tune
|
||||
analysis = tune.run(
|
||||
evaluate_function,
|
||||
metric="error_rate",
|
||||
mode="min",
|
||||
num_samples=5,
|
||||
config=search_space,
|
||||
use_ray=False,
|
||||
lexico_objectives=None,
|
||||
low_cost_partial_config=low_cost_partial_config,
|
||||
)
|
||||
print(analysis.best_trial)
|
||||
print(analysis.best_config)
|
||||
print(analysis.best_result)
|
||||
|
||||
# lexico tune
|
||||
lexico_objectives["targets"] = {"error_rate": 0.0, "flops": 0.0}
|
||||
lexico_objectives["modes"] = ["min", "min"]
|
||||
|
||||
# 1. lexico tune: absolute tolerance
|
||||
lexico_objectives["tolerances"] = {"error_rate": 0.02, "flops": 0.0}
|
||||
analysis = tune.run(
|
||||
evaluate_function,
|
||||
num_samples=5,
|
||||
@ -142,15 +159,14 @@ def test_lexiflow():
|
||||
print(analysis.best_config)
|
||||
print(analysis.best_result)
|
||||
|
||||
# Non lexico tune
|
||||
# 2. lexico tune: percentage tolerance
|
||||
lexico_objectives["tolerances"] = {"error_rate": "10%", "flops": "0%"}
|
||||
analysis = tune.run(
|
||||
evaluate_function,
|
||||
metric="error_rate",
|
||||
mode="min",
|
||||
num_samples=5,
|
||||
config=search_space,
|
||||
use_ray=False,
|
||||
lexico_objectives=None,
|
||||
lexico_objectives=lexico_objectives,
|
||||
low_cost_partial_config=low_cost_partial_config,
|
||||
)
|
||||
print(analysis.best_trial)
|
||||
|
||||
@ -162,5 +162,10 @@ analysis = tune.run(
|
||||
)
|
||||
```
|
||||
|
||||
We also support providing percentage tolerance as shown below.
|
||||
|
||||
```python
|
||||
lexico_objectives["tolerances"] = {"error_rate": "5%", "flops": "0%"}
|
||||
```
|
||||
|
||||
[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/tune_lexicographic.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/tune_lexicographic.ipynb)
|
||||
|
||||
@ -539,7 +539,7 @@ We support tuning multiple objectives with lexicographic preference by providing
|
||||
`lexico_objectives` is a dictionary that contains the following fields of key-value pairs:
|
||||
- `metrics`: a list of optimization objectives with the orders reflecting the priorities/preferences of the objectives.
|
||||
- `modes`: (optional) a list of optimization modes (each mode either "min" or "max") corresponding to the objectives in the metric list. If not provided, we use "min" as the default mode for all the objectives.
|
||||
- `tolerances`: (optional) a dictionary to specify the optimality tolerances on objectives. The keys are the metric names (provided in "metrics"), and the values are the numerical tolerances values.
|
||||
- `tolerances`: (optional) a dictionary to specify the optimality tolerances on objectives. The keys are the metric names (provided in "metrics"), and the values are the absolute/percentage tolerance in the form of numeric/string.
|
||||
- `targets`: (optional) a dictionary to specify the optimization targets on the objectives. The keys are the metric names (provided in "metric"), and the values are the numerical target values.
|
||||
|
||||
In the following example, we want to minimize `val_loss` and `pred_time` of the model where `val_loss` has high priority. The tolerances for `val_loss` and `pre_time` are 0.02 and 0 respectively. We do not set targets for these two objectives and we set them to -inf for both objectives.
|
||||
@ -554,6 +554,12 @@ lexico_objectives["targets"] = {"val_loss": -float('inf'), "pred_time": -float('
|
||||
# provide the lexico_objectives to tune.run
|
||||
tune.run(..., search_alg=None, lexico_objectives=lexico_objectives)
|
||||
```
|
||||
|
||||
We also supports providing percentage tolerance as shown below.
|
||||
|
||||
```python
|
||||
lexico_objectives["tolerances"] = {"val_loss": "10%", "pred_time": "0%"}
|
||||
```
|
||||
NOTE:
|
||||
|
||||
1. When lexico_objectives is not None, the arguments metric, mode, will be invalid, and flaml's tune uses CFO as the `search_alg`, which makes the input (if provided) `search_alg` invalid.
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user