diff --git a/flaml/automl.py b/flaml/automl.py index 55a27984c..74d60ea9a 100644 --- a/flaml/automl.py +++ b/flaml/automl.py @@ -856,6 +856,20 @@ class AutoML(BaseEstimator): def n_features_in_(self): return self._trained_estimator.n_features_in_ + @property + def feature_names_in_(self): + attr = getattr(self, "_trained_estimator", None) + attr = attr and getattr(attr, "feature_names_in_", None) + if attr is not None: + return attr + return getattr(self, "_feature_names_in_", None) + + @property + def feature_importances_(self): + attr = getattr(self, "_trained_estimator", None) + attr = attr and getattr(attr, "feature_importances_", None) + return attr + @property def time_to_find_best_model(self) -> float: """Time taken to find best model in seconds.""" @@ -1118,16 +1132,22 @@ class AutoML(BaseEstimator): X, y, self._state.task ) self._label_transformer = self._transformer.label_transformer - if hasattr(self._label_transformer, "label_list"): - self._state.fit_kwargs.update( - {"label_list": self._label_transformer.label_list} - ) - elif self._state.task == TOKENCLASSIFICATION: - if "label_list" not in self._state.fit_kwargs: + if self._state.task == TOKENCLASSIFICATION: + if hasattr(self._label_transformer, "label_list"): + self._state.fit_kwargs.update( + {"label_list": self._label_transformer.label_list} + ) + elif "label_list" not in self._state.fit_kwargs: for each_fit_kwargs in self._state.fit_kwargs_by_estimator.values(): assert ( "label_list" in each_fit_kwargs - ), "For the token-classification task, you must either (1) pass token labels; or (2) pass id labels and the label list. Please refer to the documentation for more details: https://microsoft.github.io/FLAML/docs/Examples/AutoML-NLP#a-simple-token-classification-example" + ), "For the token-classification task, you must either (1) pass token labels; or (2) pass id labels and the label list. " + "Please refer to the documentation for more details: https://microsoft.github.io/FLAML/docs/Examples/AutoML-NLP#a-simple-token-classification-example" + self._feature_names_in_ = ( + self._X_train_all.columns.to_list() + if hasattr(self._X_train_all, "columns") + else None + ) self._sample_weight_full = self._state.fit_kwargs.get( "sample_weight" diff --git a/flaml/model.py b/flaml/model.py index 5177001c8..a2f192c42 100644 --- a/flaml/model.py +++ b/flaml/model.py @@ -134,6 +134,43 @@ class BaseEstimator: """Trained model after fit() is called, or None before fit() is called.""" return self._model + @property + def feature_names_in_(self): + """ + if self._model has attribute feature_names_in_, return it. + otherwise, if self._model has attribute feature_name_, return it. + otherwise, if self._model has attribute feature_names, return it. + otherwise, if self._model has method get_booster, return the feature names. + otherwise, return None. + """ + if hasattr(self._model, "feature_names_in_"): # for sklearn, xgboost>=1.6 + return self._model.feature_names_in_ + if hasattr(self._model, "feature_name_"): # for lightgbm + return self._model.feature_name_ + if hasattr(self._model, "feature_names"): # for XGBoostEstimator + return self._model.feature_names + if hasattr(self._model, "get_booster"): + # get feature names for xgboost<1.6 + # https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.Booster.feature_names + booster = self._model.get_booster() + return booster.feature_names + return None + + @property + def feature_importances_(self): + """ + if self._model has attribute feature_importances_, return it. + otherwise, if self._model has attribute coef_, return it. + otherwise, return None. + """ + if hasattr(self._model, "feature_importances_"): + # for sklearn, lightgbm, catboost, xgboost + return self._model.feature_importances_ + elif hasattr(self._model, "coef_"): # for linear models + return self._model.coef_ + else: + return None + def _preprocess(self, X): return X diff --git a/notebook/automl_lightgbm.ipynb b/notebook/automl_lightgbm.ipynb index 2171f6c9d..41610a31e 100644 --- a/notebook/automl_lightgbm.ipynb +++ b/notebook/automl_lightgbm.ipynb @@ -39,7 +39,7 @@ "metadata": {}, "outputs": [], "source": [ - "%pip install flaml[notebook]" + "%pip install flaml[notebook]==1.0.8" ] }, { @@ -66,11 +66,19 @@ "tags": [] }, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/root/.local/lib/python3.9/site-packages/xgboost/compat.py:31: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n" + ] + }, { "name": "stdout", "output_type": "stream", "text": [ - "load dataset from ./openml_ds537.pkl\n", + "download dataset from openml\n", "Dataset name: houses\n", "X_train.shape: (15480, 8), y_train.shape: (15480,);\n", "X_test.shape: (5160, 8), y_test.shape: (5160,)\n" @@ -144,76 +152,138 @@ "name": "stderr", "output_type": "stream", "text": [ - "[flaml.automl: 09-29 23:10:08] {1446} INFO - Data split method: uniform\n", - "[flaml.automl: 09-29 23:10:08] {1450} INFO - Evaluation method: cv\n", - "[flaml.automl: 09-29 23:10:08] {1496} INFO - Minimizing error metric: 1-r2\n", - "[flaml.automl: 09-29 23:10:08] {1533} INFO - List of ML learners in AutoML Run: ['lgbm']\n", - "[flaml.automl: 09-29 23:10:08] {1763} INFO - iteration 0, current learner lgbm\n", - "[flaml.automl: 09-29 23:10:08] {1880} INFO - Estimated sufficient time budget=3832s. Estimated necessary time budget=4s.\n", - "[flaml.automl: 09-29 23:10:08] {1952} INFO - at 0.4s,\testimator lgbm's best error=0.7383,\tbest estimator lgbm's best error=0.7383\n", - "[flaml.automl: 09-29 23:10:08] {1763} INFO - iteration 1, current learner lgbm\n", - "[flaml.automl: 09-29 23:10:08] {1952} INFO - at 0.6s,\testimator lgbm's best error=0.4774,\tbest estimator lgbm's best error=0.4774\n", - "[flaml.automl: 09-29 23:10:08] {1763} INFO - iteration 2, current learner lgbm\n", - "[flaml.automl: 09-29 23:10:09] {1952} INFO - at 0.8s,\testimator lgbm's best error=0.4774,\tbest estimator lgbm's best error=0.4774\n", - "[flaml.automl: 09-29 23:10:09] {1763} INFO - iteration 3, current learner lgbm\n", - "[flaml.automl: 09-29 23:10:09] {1952} INFO - at 0.9s,\testimator lgbm's best error=0.2985,\tbest estimator lgbm's best error=0.2985\n", - "[flaml.automl: 09-29 23:10:09] {1763} INFO - iteration 4, current learner lgbm\n", - "[flaml.automl: 09-29 23:10:09] {1952} INFO - at 1.3s,\testimator lgbm's best error=0.2337,\tbest estimator lgbm's best error=0.2337\n", - "[flaml.automl: 09-29 23:10:09] {1763} INFO - iteration 5, current learner lgbm\n", - "[flaml.automl: 09-29 23:10:09] {1952} INFO - at 1.5s,\testimator lgbm's best error=0.2337,\tbest estimator lgbm's best error=0.2337\n", - "[flaml.automl: 09-29 23:10:09] {1763} INFO - iteration 6, current learner lgbm\n", - "[flaml.automl: 09-29 23:10:10] {1952} INFO - at 2.4s,\testimator lgbm's best error=0.2219,\tbest estimator lgbm's best error=0.2219\n", - "[flaml.automl: 09-29 23:10:10] {1763} INFO - iteration 7, current learner lgbm\n", - "[flaml.automl: 09-29 23:10:11] {1952} INFO - at 2.9s,\testimator lgbm's best error=0.2219,\tbest estimator lgbm's best error=0.2219\n", - "[flaml.automl: 09-29 23:10:11] {1763} INFO - iteration 8, current learner lgbm\n", - "[flaml.automl: 09-29 23:10:12] {1952} INFO - at 4.2s,\testimator lgbm's best error=0.1764,\tbest estimator lgbm's best error=0.1764\n", - "[flaml.automl: 09-29 23:10:12] {1763} INFO - iteration 9, current learner lgbm\n", - "[flaml.automl: 09-29 23:10:16] {1952} INFO - at 8.6s,\testimator lgbm's best error=0.1630,\tbest estimator lgbm's best error=0.1630\n", - "[flaml.automl: 09-29 23:10:16] {1763} INFO - iteration 10, current learner lgbm\n", - "[flaml.automl: 09-29 23:10:18] {1952} INFO - at 10.2s,\testimator lgbm's best error=0.1630,\tbest estimator lgbm's best error=0.1630\n", - "[flaml.automl: 09-29 23:10:18] {1763} INFO - iteration 11, current learner lgbm\n", - "[flaml.automl: 09-29 23:10:32] {1952} INFO - at 24.4s,\testimator lgbm's best error=0.1630,\tbest estimator lgbm's best error=0.1630\n", - "[flaml.automl: 09-29 23:10:32] {1763} INFO - iteration 12, current learner lgbm\n", - "[flaml.automl: 09-29 23:10:34] {1952} INFO - at 26.0s,\testimator lgbm's best error=0.1630,\tbest estimator lgbm's best error=0.1630\n", - "[flaml.automl: 09-29 23:10:34] {1763} INFO - iteration 13, current learner lgbm\n", - "[flaml.automl: 09-29 23:10:43] {1952} INFO - at 35.5s,\testimator lgbm's best error=0.1564,\tbest estimator lgbm's best error=0.1564\n", - "[flaml.automl: 09-29 23:10:43] {1763} INFO - iteration 14, current learner lgbm\n", - "[flaml.automl: 09-29 23:10:49] {1952} INFO - at 40.7s,\testimator lgbm's best error=0.1564,\tbest estimator lgbm's best error=0.1564\n", - "[flaml.automl: 09-29 23:10:49] {1763} INFO - iteration 15, current learner lgbm\n", - "[flaml.automl: 09-29 23:10:52] {1952} INFO - at 43.8s,\testimator lgbm's best error=0.1564,\tbest estimator lgbm's best error=0.1564\n", - "[flaml.automl: 09-29 23:10:52] {1763} INFO - iteration 16, current learner lgbm\n", - "[flaml.automl: 09-29 23:11:08] {1952} INFO - at 59.9s,\testimator lgbm's best error=0.1564,\tbest estimator lgbm's best error=0.1564\n", - "[flaml.automl: 09-29 23:11:08] {1763} INFO - iteration 17, current learner lgbm\n", - "[flaml.automl: 09-29 23:11:20] {1952} INFO - at 72.6s,\testimator lgbm's best error=0.1564,\tbest estimator lgbm's best error=0.1564\n", - "[flaml.automl: 09-29 23:11:20] {1763} INFO - iteration 18, current learner lgbm\n", - "[flaml.automl: 09-29 23:11:24] {1952} INFO - at 75.9s,\testimator lgbm's best error=0.1564,\tbest estimator lgbm's best error=0.1564\n", - "[flaml.automl: 09-29 23:11:24] {1763} INFO - iteration 19, current learner lgbm\n", - "[flaml.automl: 09-29 23:11:27] {1952} INFO - at 79.3s,\testimator lgbm's best error=0.1564,\tbest estimator lgbm's best error=0.1564\n", - "[flaml.automl: 09-29 23:11:27] {1763} INFO - iteration 20, current learner lgbm\n", - "[flaml.automl: 09-29 23:11:51] {1952} INFO - at 102.8s,\testimator lgbm's best error=0.1564,\tbest estimator lgbm's best error=0.1564\n", - "[flaml.automl: 09-29 23:11:51] {1763} INFO - iteration 21, current learner lgbm\n", - "[flaml.automl: 09-29 23:11:53] {1952} INFO - at 105.5s,\testimator lgbm's best error=0.1564,\tbest estimator lgbm's best error=0.1564\n", - "[flaml.automl: 09-29 23:11:53] {1763} INFO - iteration 22, current learner lgbm\n", - "[flaml.automl: 09-29 23:12:38] {1952} INFO - at 149.8s,\testimator lgbm's best error=0.1564,\tbest estimator lgbm's best error=0.1564\n", - "[flaml.automl: 09-29 23:12:38] {1763} INFO - iteration 23, current learner lgbm\n", - "[flaml.automl: 09-29 23:12:38] {1952} INFO - at 150.6s,\testimator lgbm's best error=0.1564,\tbest estimator lgbm's best error=0.1564\n", - "[flaml.automl: 09-29 23:12:38] {1763} INFO - iteration 24, current learner lgbm\n", - "[flaml.automl: 09-29 23:13:19] {1952} INFO - at 191.0s,\testimator lgbm's best error=0.1564,\tbest estimator lgbm's best error=0.1564\n", - "[flaml.automl: 09-29 23:13:19] {1763} INFO - iteration 25, current learner lgbm\n", - "[flaml.automl: 09-29 23:14:08] {1952} INFO - at 240.6s,\testimator lgbm's best error=0.1564,\tbest estimator lgbm's best error=0.1564\n", - "[flaml.automl: 09-29 23:14:09] {2059} INFO - selected model: LGBMRegressor(colsample_bytree=0.8025848209352517,\n", - " learning_rate=0.09100963138990395, max_bin=255,\n", - " min_child_samples=42, n_estimators=363, num_leaves=216,\n", - " reg_alpha=0.001113000336715291, reg_lambda=76.50614276906414,\n", + "[flaml.automl: 07-01 15:22:15] {2427} INFO - task = regression\n", + "[flaml.automl: 07-01 15:22:15] {2429} INFO - Data split method: uniform\n", + "[flaml.automl: 07-01 15:22:15] {2432} INFO - Evaluation method: cv\n", + "[flaml.automl: 07-01 15:22:15] {2501} INFO - Minimizing error metric: 1-r2\n", + "[flaml.automl: 07-01 15:22:15] {2641} INFO - List of ML learners in AutoML Run: ['lgbm']\n", + "[flaml.automl: 07-01 15:22:15] {2933} INFO - iteration 0, current learner lgbm\n", + "[flaml.automl: 07-01 15:22:16] {3061} INFO - Estimated sufficient time budget=1981s. Estimated necessary time budget=2s.\n", + "[flaml.automl: 07-01 15:22:16] {3108} INFO - at 0.3s,\testimator lgbm's best error=0.7383,\tbest estimator lgbm's best error=0.7383\n", + "[flaml.automl: 07-01 15:22:16] {2933} INFO - iteration 1, current learner lgbm\n", + "[flaml.automl: 07-01 15:22:16] {3108} INFO - at 0.5s,\testimator lgbm's best error=0.7383,\tbest estimator lgbm's best error=0.7383\n", + "[flaml.automl: 07-01 15:22:16] {2933} INFO - iteration 2, current learner lgbm\n", + "[flaml.automl: 07-01 15:22:16] {3108} INFO - at 0.7s,\testimator lgbm's best error=0.3250,\tbest estimator lgbm's best error=0.3250\n", + "[flaml.automl: 07-01 15:22:16] {2933} INFO - iteration 3, current learner lgbm\n", + "[flaml.automl: 07-01 15:22:16] {3108} INFO - at 1.1s,\testimator lgbm's best error=0.1868,\tbest estimator lgbm's best error=0.1868\n", + "[flaml.automl: 07-01 15:22:16] {2933} INFO - iteration 4, current learner lgbm\n", + "[flaml.automl: 07-01 15:22:17] {3108} INFO - at 1.3s,\testimator lgbm's best error=0.1868,\tbest estimator lgbm's best error=0.1868\n", + "[flaml.automl: 07-01 15:22:17] {2933} INFO - iteration 5, current learner lgbm\n", + "[flaml.automl: 07-01 15:22:19] {3108} INFO - at 3.6s,\testimator lgbm's best error=0.1868,\tbest estimator lgbm's best error=0.1868\n", + "[flaml.automl: 07-01 15:22:19] {2933} INFO - iteration 6, current learner lgbm\n", + "[flaml.automl: 07-01 15:22:19] {3108} INFO - at 3.8s,\testimator lgbm's best error=0.1868,\tbest estimator lgbm's best error=0.1868\n", + "[flaml.automl: 07-01 15:22:19] {2933} INFO - iteration 7, current learner lgbm\n", + "[flaml.automl: 07-01 15:22:19] {3108} INFO - at 4.2s,\testimator lgbm's best error=0.1868,\tbest estimator lgbm's best error=0.1868\n", + "[flaml.automl: 07-01 15:22:19] {2933} INFO - iteration 8, current learner lgbm\n", + "[flaml.automl: 07-01 15:22:20] {3108} INFO - at 4.7s,\testimator lgbm's best error=0.1868,\tbest estimator lgbm's best error=0.1868\n", + "[flaml.automl: 07-01 15:22:20] {2933} INFO - iteration 9, current learner lgbm\n", + "[flaml.automl: 07-01 15:22:20] {3108} INFO - at 4.9s,\testimator lgbm's best error=0.1868,\tbest estimator lgbm's best error=0.1868\n", + "[flaml.automl: 07-01 15:22:20] {2933} INFO - iteration 10, current learner lgbm\n", + "[flaml.automl: 07-01 15:22:22] {3108} INFO - at 6.6s,\testimator lgbm's best error=0.1744,\tbest estimator lgbm's best error=0.1744\n", + "[flaml.automl: 07-01 15:22:22] {2933} INFO - iteration 11, current learner lgbm\n", + "[flaml.automl: 07-01 15:22:22] {3108} INFO - at 7.2s,\testimator lgbm's best error=0.1744,\tbest estimator lgbm's best error=0.1744\n", + "[flaml.automl: 07-01 15:22:22] {2933} INFO - iteration 12, current learner lgbm\n", + "[flaml.automl: 07-01 15:22:28] {3108} INFO - at 12.9s,\testimator lgbm's best error=0.1744,\tbest estimator lgbm's best error=0.1744\n", + "[flaml.automl: 07-01 15:22:28] {2933} INFO - iteration 13, current learner lgbm\n", + "[flaml.automl: 07-01 15:22:29] {3108} INFO - at 13.6s,\testimator lgbm's best error=0.1744,\tbest estimator lgbm's best error=0.1744\n", + "[flaml.automl: 07-01 15:22:29] {2933} INFO - iteration 14, current learner lgbm\n", + "[flaml.automl: 07-01 15:22:34] {3108} INFO - at 18.4s,\testimator lgbm's best error=0.1744,\tbest estimator lgbm's best error=0.1744\n", + "[flaml.automl: 07-01 15:22:34] {2933} INFO - iteration 15, current learner lgbm\n", + "[flaml.automl: 07-01 15:22:39] {3108} INFO - at 23.9s,\testimator lgbm's best error=0.1744,\tbest estimator lgbm's best error=0.1744\n", + "[flaml.automl: 07-01 15:22:39] {2933} INFO - iteration 16, current learner lgbm\n", + "[flaml.automl: 07-01 15:22:40] {3108} INFO - at 24.5s,\testimator lgbm's best error=0.1744,\tbest estimator lgbm's best error=0.1744\n", + "[flaml.automl: 07-01 15:22:40] {2933} INFO - iteration 17, current learner lgbm\n", + "[flaml.automl: 07-01 15:22:53] {3108} INFO - at 37.9s,\testimator lgbm's best error=0.1744,\tbest estimator lgbm's best error=0.1744\n", + "[flaml.automl: 07-01 15:22:53] {2933} INFO - iteration 18, current learner lgbm\n", + "[flaml.automl: 07-01 15:22:53] {3108} INFO - at 38.2s,\testimator lgbm's best error=0.1744,\tbest estimator lgbm's best error=0.1744\n", + "[flaml.automl: 07-01 15:22:53] {2933} INFO - iteration 19, current learner lgbm\n", + "[flaml.automl: 07-01 15:22:54] {3108} INFO - at 39.2s,\testimator lgbm's best error=0.1744,\tbest estimator lgbm's best error=0.1744\n", + "[flaml.automl: 07-01 15:22:54] {2933} INFO - iteration 20, current learner lgbm\n", + "[flaml.automl: 07-01 15:22:56] {3108} INFO - at 41.0s,\testimator lgbm's best error=0.1738,\tbest estimator lgbm's best error=0.1738\n", + "[flaml.automl: 07-01 15:22:56] {2933} INFO - iteration 21, current learner lgbm\n", + "[flaml.automl: 07-01 15:22:58] {3108} INFO - at 42.5s,\testimator lgbm's best error=0.1738,\tbest estimator lgbm's best error=0.1738\n", + "[flaml.automl: 07-01 15:22:58] {2933} INFO - iteration 22, current learner lgbm\n", + "[flaml.automl: 07-01 15:22:59] {3108} INFO - at 44.2s,\testimator lgbm's best error=0.1738,\tbest estimator lgbm's best error=0.1738\n", + "[flaml.automl: 07-01 15:22:59] {2933} INFO - iteration 23, current learner lgbm\n", + "[flaml.automl: 07-01 15:23:03] {3108} INFO - at 47.8s,\testimator lgbm's best error=0.1738,\tbest estimator lgbm's best error=0.1738\n", + "[flaml.automl: 07-01 15:23:03] {2933} INFO - iteration 24, current learner lgbm\n", + "[flaml.automl: 07-01 15:23:04] {3108} INFO - at 48.6s,\testimator lgbm's best error=0.1738,\tbest estimator lgbm's best error=0.1738\n", + "[flaml.automl: 07-01 15:23:04] {2933} INFO - iteration 25, current learner lgbm\n", + "[flaml.automl: 07-01 15:23:05] {3108} INFO - at 49.5s,\testimator lgbm's best error=0.1738,\tbest estimator lgbm's best error=0.1738\n", + "[flaml.automl: 07-01 15:23:05] {2933} INFO - iteration 26, current learner lgbm\n", + "[flaml.automl: 07-01 15:23:07] {3108} INFO - at 51.4s,\testimator lgbm's best error=0.1611,\tbest estimator lgbm's best error=0.1611\n", + "[flaml.automl: 07-01 15:23:07] {2933} INFO - iteration 27, current learner lgbm\n", + "[flaml.automl: 07-01 15:23:09] {3108} INFO - at 53.8s,\testimator lgbm's best error=0.1611,\tbest estimator lgbm's best error=0.1611\n", + "[flaml.automl: 07-01 15:23:09] {2933} INFO - iteration 28, current learner lgbm\n", + "[flaml.automl: 07-01 15:23:11] {3108} INFO - at 55.4s,\testimator lgbm's best error=0.1611,\tbest estimator lgbm's best error=0.1611\n", + "[flaml.automl: 07-01 15:23:11] {2933} INFO - iteration 29, current learner lgbm\n", + "[flaml.automl: 07-01 15:23:12] {3108} INFO - at 56.6s,\testimator lgbm's best error=0.1611,\tbest estimator lgbm's best error=0.1611\n", + "[flaml.automl: 07-01 15:23:12] {2933} INFO - iteration 30, current learner lgbm\n", + "[flaml.automl: 07-01 15:23:15] {3108} INFO - at 59.8s,\testimator lgbm's best error=0.1611,\tbest estimator lgbm's best error=0.1611\n", + "[flaml.automl: 07-01 15:23:15] {2933} INFO - iteration 31, current learner lgbm\n", + "[flaml.automl: 07-01 15:23:20] {3108} INFO - at 64.5s,\testimator lgbm's best error=0.1611,\tbest estimator lgbm's best error=0.1611\n", + "[flaml.automl: 07-01 15:23:20] {2933} INFO - iteration 32, current learner lgbm\n", + "[flaml.automl: 07-01 15:23:20] {3108} INFO - at 65.1s,\testimator lgbm's best error=0.1611,\tbest estimator lgbm's best error=0.1611\n", + "[flaml.automl: 07-01 15:23:20] {2933} INFO - iteration 33, current learner lgbm\n", + "[flaml.automl: 07-01 15:23:31] {3108} INFO - at 76.0s,\testimator lgbm's best error=0.1611,\tbest estimator lgbm's best error=0.1611\n", + "[flaml.automl: 07-01 15:23:31] {2933} INFO - iteration 34, current learner lgbm\n", + "[flaml.automl: 07-01 15:23:32] {3108} INFO - at 76.5s,\testimator lgbm's best error=0.1611,\tbest estimator lgbm's best error=0.1611\n", + "[flaml.automl: 07-01 15:23:32] {2933} INFO - iteration 35, current learner lgbm\n", + "[flaml.automl: 07-01 15:23:35] {3108} INFO - at 79.3s,\testimator lgbm's best error=0.1611,\tbest estimator lgbm's best error=0.1611\n", + "[flaml.automl: 07-01 15:23:35] {2933} INFO - iteration 36, current learner lgbm\n", + "[flaml.automl: 07-01 15:23:35] {3108} INFO - at 80.2s,\testimator lgbm's best error=0.1611,\tbest estimator lgbm's best error=0.1611\n", + "[flaml.automl: 07-01 15:23:35] {2933} INFO - iteration 37, current learner lgbm\n", + "[flaml.automl: 07-01 15:23:37] {3108} INFO - at 81.5s,\testimator lgbm's best error=0.1611,\tbest estimator lgbm's best error=0.1611\n", + "[flaml.automl: 07-01 15:23:37] {2933} INFO - iteration 38, current learner lgbm\n", + "[flaml.automl: 07-01 15:23:39] {3108} INFO - at 83.8s,\testimator lgbm's best error=0.1611,\tbest estimator lgbm's best error=0.1611\n", + "[flaml.automl: 07-01 15:23:39] {2933} INFO - iteration 39, current learner lgbm\n", + "[flaml.automl: 07-01 15:23:40] {3108} INFO - at 84.8s,\testimator lgbm's best error=0.1611,\tbest estimator lgbm's best error=0.1611\n", + "[flaml.automl: 07-01 15:23:40] {2933} INFO - iteration 40, current learner lgbm\n", + "[flaml.automl: 07-01 15:23:43] {3108} INFO - at 88.1s,\testimator lgbm's best error=0.1611,\tbest estimator lgbm's best error=0.1611\n", + "[flaml.automl: 07-01 15:23:43] {2933} INFO - iteration 41, current learner lgbm\n", + "[flaml.automl: 07-01 15:23:45] {3108} INFO - at 89.4s,\testimator lgbm's best error=0.1611,\tbest estimator lgbm's best error=0.1611\n", + "[flaml.automl: 07-01 15:23:45] {2933} INFO - iteration 42, current learner lgbm\n", + "[flaml.automl: 07-01 15:23:47] {3108} INFO - at 91.7s,\testimator lgbm's best error=0.1608,\tbest estimator lgbm's best error=0.1608\n", + "[flaml.automl: 07-01 15:23:47] {2933} INFO - iteration 43, current learner lgbm\n", + "[flaml.automl: 07-01 15:23:48] {3108} INFO - at 92.4s,\testimator lgbm's best error=0.1608,\tbest estimator lgbm's best error=0.1608\n", + "[flaml.automl: 07-01 15:23:48] {2933} INFO - iteration 44, current learner lgbm\n", + "[flaml.automl: 07-01 15:23:54] {3108} INFO - at 98.5s,\testimator lgbm's best error=0.1608,\tbest estimator lgbm's best error=0.1608\n", + "[flaml.automl: 07-01 15:23:54] {2933} INFO - iteration 45, current learner lgbm\n", + "[flaml.automl: 07-01 15:23:55] {3108} INFO - at 100.2s,\testimator lgbm's best error=0.1608,\tbest estimator lgbm's best error=0.1608\n", + "[flaml.automl: 07-01 15:23:55] {2933} INFO - iteration 46, current learner lgbm\n", + "[flaml.automl: 07-01 15:23:58] {3108} INFO - at 102.6s,\testimator lgbm's best error=0.1608,\tbest estimator lgbm's best error=0.1608\n", + "[flaml.automl: 07-01 15:23:58] {2933} INFO - iteration 47, current learner lgbm\n", + "[flaml.automl: 07-01 15:23:59] {3108} INFO - at 103.4s,\testimator lgbm's best error=0.1608,\tbest estimator lgbm's best error=0.1608\n", + "[flaml.automl: 07-01 15:23:59] {2933} INFO - iteration 48, current learner lgbm\n", + "[flaml.automl: 07-01 15:24:03] {3108} INFO - at 108.0s,\testimator lgbm's best error=0.1608,\tbest estimator lgbm's best error=0.1608\n", + "[flaml.automl: 07-01 15:24:03] {2933} INFO - iteration 49, current learner lgbm\n", + "[flaml.automl: 07-01 15:24:04] {3108} INFO - at 108.8s,\testimator lgbm's best error=0.1608,\tbest estimator lgbm's best error=0.1608\n", + "[flaml.automl: 07-01 15:24:04] {2933} INFO - iteration 50, current learner lgbm\n", + "[flaml.automl: 07-01 15:24:12] {3108} INFO - at 116.3s,\testimator lgbm's best error=0.1558,\tbest estimator lgbm's best error=0.1558\n", + "[flaml.automl: 07-01 15:24:12] {2933} INFO - iteration 51, current learner lgbm\n", + "[flaml.automl: 07-01 15:25:01] {3108} INFO - at 166.2s,\testimator lgbm's best error=0.1558,\tbest estimator lgbm's best error=0.1558\n", + "[flaml.automl: 07-01 15:25:01] {2933} INFO - iteration 52, current learner lgbm\n", + "[flaml.automl: 07-01 15:25:02] {3108} INFO - at 167.2s,\testimator lgbm's best error=0.1558,\tbest estimator lgbm's best error=0.1558\n", + "[flaml.automl: 07-01 15:25:02] {2933} INFO - iteration 53, current learner lgbm\n", + "[flaml.automl: 07-01 15:25:04] {3108} INFO - at 168.7s,\testimator lgbm's best error=0.1558,\tbest estimator lgbm's best error=0.1558\n", + "[flaml.automl: 07-01 15:25:04] {2933} INFO - iteration 54, current learner lgbm\n", + "[flaml.automl: 07-01 15:25:38] {3108} INFO - at 203.0s,\testimator lgbm's best error=0.1558,\tbest estimator lgbm's best error=0.1558\n", + "[flaml.automl: 07-01 15:25:38] {2933} INFO - iteration 55, current learner lgbm\n", + "[flaml.automl: 07-01 15:25:47] {3108} INFO - at 211.9s,\testimator lgbm's best error=0.1558,\tbest estimator lgbm's best error=0.1558\n", + "[flaml.automl: 07-01 15:25:47] {2933} INFO - iteration 56, current learner lgbm\n", + "[flaml.automl: 07-01 15:25:51] {3108} INFO - at 216.2s,\testimator lgbm's best error=0.1558,\tbest estimator lgbm's best error=0.1558\n", + "[flaml.automl: 07-01 15:25:51] {2933} INFO - iteration 57, current learner lgbm\n", + "[flaml.automl: 07-01 15:25:53] {3108} INFO - at 217.8s,\testimator lgbm's best error=0.1558,\tbest estimator lgbm's best error=0.1558\n", + "[flaml.automl: 07-01 15:25:53] {2933} INFO - iteration 58, current learner lgbm\n", + "[flaml.automl: 07-01 15:26:19] {3108} INFO - at 243.9s,\testimator lgbm's best error=0.1558,\tbest estimator lgbm's best error=0.1558\n", + "[flaml.automl: 07-01 15:26:21] {3372} INFO - retrain lgbm for 1.7s\n", + "[flaml.automl: 07-01 15:26:21] {3379} INFO - retrained model: LGBMRegressor(colsample_bytree=0.6884091116362046,\n", + " learning_rate=0.0825101833775657, max_bin=1023,\n", + " min_child_samples=15, n_estimators=436, num_leaves=46,\n", + " reg_alpha=0.0010949400705571237, reg_lambda=0.004934208563558304,\n", " verbose=-1)\n", - "[flaml.automl: 09-29 23:14:10] {2122} INFO - retrain lgbm for 1.9s\n", - "[flaml.automl: 09-29 23:14:10] {2128} INFO - retrained model: LGBMRegressor(colsample_bytree=0.8025848209352517,\n", - " learning_rate=0.09100963138990395, max_bin=255,\n", - " min_child_samples=42, n_estimators=363, num_leaves=216,\n", - " reg_alpha=0.001113000336715291, reg_lambda=76.50614276906414,\n", - " verbose=-1)\n", - "[flaml.automl: 09-29 23:14:10] {1557} INFO - fit succeeded\n", - "[flaml.automl: 09-29 23:14:10] {1558} INFO - Time taken to find the best model: 35.49429440498352\n" + "[flaml.automl: 07-01 15:26:21] {2672} INFO - fit succeeded\n", + "[flaml.automl: 07-01 15:26:21] {2673} INFO - Time taken to find the best model: 116.267258644104\n" ] } ], @@ -247,9 +317,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "Best hyperparmeter config: {'n_estimators': 363, 'num_leaves': 216, 'min_child_samples': 42, 'learning_rate': 0.09100963138990395, 'log_max_bin': 8, 'colsample_bytree': 0.8025848209352517, 'reg_alpha': 0.001113000336715291, 'reg_lambda': 76.50614276906414}\n", - "Best r2 on validation data: 0.8436\n", - "Training duration of best run: 9.511 s\n" + "Best hyperparmeter config: {'n_estimators': 436, 'num_leaves': 46, 'min_child_samples': 15, 'learning_rate': 0.0825101833775657, 'log_max_bin': 10, 'colsample_bytree': 0.6884091116362046, 'reg_alpha': 0.0010949400705571237, 'reg_lambda': 0.004934208563558304}\n", + "Best r2 on validation data: 0.8442\n", + "Training duration of best run: 1.668 s\n" ] } ], @@ -271,11 +341,22 @@ "outputs": [ { "data": { + "text/html": [ + "
LGBMRegressor(colsample_bytree=0.6884091116362046,\n",
+       "              learning_rate=0.0825101833775657, max_bin=1023,\n",
+       "              min_child_samples=15, n_estimators=436, num_leaves=46,\n",
+       "              reg_alpha=0.0010949400705571237, reg_lambda=0.004934208563558304,\n",
+       "              verbose=-1)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], "text/plain": [ - "LGBMRegressor(colsample_bytree=0.8025848209352517,\n", - " learning_rate=0.09100963138990395, max_bin=255,\n", - " min_child_samples=42, n_estimators=363, num_leaves=216,\n", - " reg_alpha=0.001113000336715291, reg_lambda=76.50614276906414,\n", + "LGBMRegressor(colsample_bytree=0.6884091116362046,\n", + " learning_rate=0.0825101833775657, max_bin=1023,\n", + " min_child_samples=15, n_estimators=436, num_leaves=46,\n", + " reg_alpha=0.0010949400705571237, reg_lambda=0.004934208563558304,\n", " verbose=-1)" ] }, @@ -305,7 +386,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdUAAAD4CAYAAAC6/HyrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8GearUAAAfTklEQVR4nO3de3hdVZ3/8feHtLTcTIEiTyxIADtcW0IbkPvgDRX9IUi1CgMF52eHy6Diw2gVn7HgOAJlRkRRqDNIueqvXISnCJUfWOgPKSWhbdICBaRVqQiCEi4VhPb7+2Ov0E0ml3OSnZyTk8/rec6Tvddee63vOrvNN2vtnRNFBGZmZjZwm1U6ADMzs1rhpGpmZlYQJ1UzM7OCOKmamZkVxEnVzMysIKMqHYANrvHjx0djY2OlwzAzG1ZaW1ufj4gdyj3PSbXGNTY20tLSUukwzMyGFUm/7c95Xv41MzMriJOqmZlZQZxUzczMCuKkamZmVhAnVTMzs4I4qZqZmRXESdXMzKwgTqpmZmYF8Yc/1Lj2dR00zrq90mGYmfVo7QUfq3QIhfFM1czMrCBOqmZmZgVxUjUzMyuIk6qZmVlBnFTNzMwK4qRqZmZWECfVHEmvDEKbx0ialbaPlbR3P9pYJKm56NjMzKxYTqqDLCJui4gL0u6xQNlJ1czMhgcn1W4oM0fSSkntkqan8iPTrPFGSY9Juk6S0rGjU1mrpEslLUjlp0j6gaRDgGOAOZKWS9o9PwOVNF7S2rS9haSfSnpU0i3AFrnYjpL0gKSHJc2XtPXQvjtmZtYTf6JS9z4JNAH7AeOBhyTdl47tD+wD/AG4HzhUUgtwBXBERKyRdEPXBiPi15JuAxZExI0AKR9353RgfUTsJWky8HCqPx74BvDBiHhV0leBLwPn50+WNBOYCVD3jh36+RaYmVm5PFPt3mHADRGxISKeBe4FDkjHlkbE0xGxEVgONAJ7Ak9FxJpU538k1TIdAVwLEBFtQFsqP4hs+fh+ScuBGcAuXU+OiLkR0RwRzXVb1g8wFDMzK5VnquV7Pbe9gYG9h2+y6QebsSXUF3BXRHx2AH2amdkg8Uy1e4uB6ZLqJO1ANnNc2kv91cBukhrT/vQe6r0MbJPbXwtMTdvTcuX3AScASNoXmJzKl5AtN78nHdtK0t+VMB4zMxsCTqrdu4VsyXUFcA/wlYj4Y0+VI+KvwBnAnZJayZJnRzdVfwr8i6RlknYHLgZOl7SM7N5tpx8BW0t6lOx+aWvq50/AKcANktqAB8iWns3MrAooIiodQ02QtHVEvJKeBr4MeCIivlvpuMY0TIyGGZdUOgwzsx5V459+k9QaEWV/PoBnqsX5fHp4aBVQT/Y0sJmZjSB+UKkgaVZa8ZmpmZlVjmeqZmZmBXFSNTMzK4iTqpmZWUF8T7XGTZpQT0sVPllnZlaLPFM1MzMriJOqmZlZQZxUzczMCuKkamZmVhA/qFTj2td10Djr9kqHYWY2pCr10YeeqZqZmRXESdXMzKwgTqpmZmYFcVI1MzMriJOqmZlZQZxUzczMCuKkWgZJr/RxfJykM3L775J0Y9puknR0P/qcLemc8qM1M7Oh5qRarHHAW0k1Iv4QEdPSbhNQdlI1M7Phw0m1HyRtLeluSQ9Lapf0iXToAmB3ScslzZHUKGmlpM2B84Hp6dj0rjPQVK8xbZ8r6XFJ/w/YI1dnd0l3SmqVtFjSnkM2aDMz65M/Ual/XgOOi4iXJI0Hlki6DZgF7BsRTQCdSTIi/ibpX4HmiPjndGx2dw1Lmgp8hmxmOwp4GGhNh+cCp0XEE5LeC/wQeH83bcwEZgLUvWOHIsZrZmYlcFLtHwH/LukIYCMwAdixoLYPB26JiPUAKVkjaWvgEGC+pM66Y7prICLmkiVgxjRMjILiMjOzPjip9s+JwA7A1Ih4Q9JaYGyZbbzJ25ff+zp/M+DFzlmwmZlVH99T7Z964LmUUN8H7JLKXwa26eGcrsfWAlMAJE0Bdk3l9wHHStpC0jbA/wKIiJeANZI+lc6RpP2KG5KZmQ2Uk2r/XAc0S2oHTgYeA4iIF4D700NHc7qc8ytg784HlYCbgO0krQL+GXg8tfEw8DNgBXAH8FCujROBf5S0AlgFfAIzM6saivAtt1o2pmFiNMy4pNJhmJkNqYH+6TdJrRHRXO55nqmamZkVxEnVzMysIE6qZmZmBXFSNTMzK4h/T7XGTZpQT8sAb9ibmVlpPFM1MzMriJOqmZlZQZxUzczMCuKkamZmVhA/qFTj2td10Djr9kqHYVa1BvrJO2Z5nqmamZkVxEnVzMysIE6qZmZmBXFSNTMzK4iTqpmZWUGcVM3MzAoyIpKqpEZJKyvQ7ytl1p8t6ZxuyisSv5mZlWdEJFUzM7OhMJKSap2kH0taJemXkraQ1CRpiaQ2SbdI2hZA0iJJzWl7vKS1aXsfSUslLU/nTEzl/5Arv0JSXWenkr4taUXqZ8dU1ijpntTG3ZLe3TVYSVPTeSuAM3Pl3cZgZmaVN5KS6kTgsojYB3gROB64GvhqREwG2oFv9tHGacD3IqIJaAaelrQXMB04NJVvAE5M9bcClkTEfsB9wOdT+feBeanf64BLu+nrJ8BZ6dxeY+h6oqSZkloktWxY39HHkMzMrCgjKamuiYjlabsV2B0YFxH3prJ5wBF9tPEA8HVJXwV2iYi/Ah8ApgIPSVqe9ndL9f8GLMj12Zi2DwauT9vXAIflO5E0LsV2X65ObzG8TUTMjYjmiGiu27K+jyGZmVlRRlJSfT23vQEY10vdN9n03oztLIyI64FjgL8Cv5D0fkBks86m9NojImanU96IiMj1OeDPWu4hBjMzqwIjKal21QH8RdLhaf8koHPWupZs9gkwrfMESbsBT0XEpcCtwGTgbmCapHemOttJ2qWPvn8NfCZtnwgszh+MiBeBFyUdlqvTWwxmZlYFRnJSBZgBzJHUBjQB56fyi4HTJS0DxufqfxpYmZZ59wWujohHgG8Av0zt3AU09NHvWcCpqf5JwBe7qXMqcFnqS73FUPJozcxsUGnT6qTVojENE6NhxiWVDsOsavlPv1l3JLVGRHO55430maqZmVlhnFTNzMwK4qRqZmZWECdVMzOzggz49yatuk2aUE+LH8QwMxsSnqmamZkVxEnVzMysIE6qZmZmBXFSNTMzK4gfVKpx7es6aJx1e6XDMLNhyp84VR7PVM3MzAripGpmZlYQJ1UzM7OCOKmamZkVxEnVzMysIE6qZmZmBXFSHQSSGiWtLKHOCbn9ZkmXDn50ZmY2WJxUK6cReCupRkRLRHyhcuGYmdlAjcikmmaJj0m6TtKjkm6UtKWkD0haJqld0pWSxqT6ayVdlMqXSnpPKr9K0rRcu6/00NdiSQ+n1yHp0AXA4ZKWSzpb0pGSFqRztpP0c0ltkpZImpzKZ6e4Fkl6SpKTsJlZFRmRSTXZA/hhROwFvAR8GbgKmB4Rk8g+ber0XP2OVP4D4JIy+nkO+FBETAGmA51LvLOAxRHRFBHf7XLOecCyiJgMfB24OndsT+DDwIHANyWN7tqhpJmSWiS1bFjfUUaoZmY2ECM5qf4+Iu5P29cCHwDWRMTjqWwecESu/g25rweX0c9o4MeS2oH5wN4lnHMYcA1ARNwDbC/pHenY7RHxekQ8T5awd+x6ckTMjYjmiGiu27K+jFDNzGwgRvJn/0aX/ReB7Uus37n9JukHE0mbAZt3c97ZwLPAfqnua/0JNuf13PYGRvY1NDOrKiN5pvpuSZ0zzhOAFqCx834pcBJwb67+9NzXB9L2WmBq2j6GbFbaVT3wTERsTG3WpfKXgW16iG0xcCKApCOB5yPipZJGZWZmFTOSZzmrgTMlXQk8AnwBWALMlzQKeAi4PFd/W0ltZDPFz6ayHwO3SloB3Am82k0/PwRuknRylzptwIZ07lXAstw5s4ErU3/rgRkDG6qZmQ0FRXRdBa19khqBBRGxb4n11wLN6T7msDKmYWI0zCjnuSozs01G6p9+k9QaEc3lnjeSl3/NzMwKNSKXfyNiLVDSLDXVbxy0YMzMrGZ4pmpmZlYQJ1UzM7OCOKmamZkVZETeUx1JJk2op2WEPr1nZjbUPFM1MzMriJOqmZlZQZxUzczMCuKkamZmVhA/qFTj2td10Djr9kqHYVb1RurH8VmxPFM1MzMriJOqmZlZQZxUzczMCuKkamZmVhAnVTMzs4I4qZqZmRWk6pKqpHGSzuijTqOkE0poq1HSyl6OnyLpB/2Js4jzzcystlRdUgXGAb0mVaAR6DOpVook//6vmdkIVI1J9QJgd0nLJc1Jr5WS2iVNz9U5PNU5O81IF0t6OL0OKaO/nSUtkvSEpG92Fkr6B0lLUx9XSKpL5adKelzSUuDQXP2rJF0u6UHgIklNkpZIapN0i6RtU72eyhdJ+q6kFkmPSjpA0s0prn9LdbaSdLukFek9mY6ZmVWNakyqs4DfREQTsARoAvYDPgjMkdSQ6iyOiKaI+C7wHPChiJgCTAcuLaO/A4HjgcnApyQ1S9ortXNoimMDcGLq+zyyZHoYsHeXtnYCDomILwNXA1+NiMlAO9CZsHsqB/hbRDQDlwO3AmcC+wKnSNoe+Ajwh4jYLyL2Be7sbkCSZqbk3LJhfUcZb4WZmQ1EtS9THgbcEBEbgGcl3QscALzUpd5o4AeSOhPg35XRx10R8QKApJtTn28CU4GHJAFsQZa43wssiog/pfo/69LX/IjYIKkeGBcR96byecD8nspz59+WvrYDqyLimdTPU8DOqfw/JF0ILIiIxd0NKCLmAnMBxjRMjDLeCzMzG4BqT6qlOht4lmxGuxnwWhnndk06AQiYFxFfyx+QdGwfbb1aRr/deT193Zjb7twfFRGPS5oCHA38m6S7I+L8AfZpZmYFqcbl35eBbdL2YmC6pDpJOwBHAEu71AGoB56JiI3ASUBdGf19SNJ2krYAjgXuB+4Gpkl6J0A6vgvwIPD3kraXNBr4VHcNRkQH8BdJh6eik4B7eyovNVBJ7wLWR8S1wBxgShnjNDOzQVZ1M9WIeEHS/elXYe4A2oAVZDPIr0TEHyW9AGyQtAK4CvghcJOkk8nuM5YzY1wK3ER2P/TaiGgBkPQN4JeSNgPeAM6MiCWSZgMPAC8Cy3tpdwZwuaQtgaeAU/soL8UksvvKG1NMp5dxrpmZDTJF+JZbLRvTMDEaZlxS6TDMqp7/9JvlSWpND46WpRqXf83MzIalqlv+HQySPgxc2KV4TUQcV4l4zMysNo2IpBoRC4GFlY7DzMxqm5d/zczMCjIiZqoj2aQJ9bT4AQwzsyHhmaqZmVlBnFTNzMwK4qRqZmZWECdVMzOzgvhBpRrXvq6Dxlm3VzoMM0v8yU21zTNVMzOzgjipmpmZFcRJ1czMrCBOqmZmZgVxUjUzMyuIk6qZmVlBnFTNzMwKUtNJVdI4SWf0UadR0gkltNUoaWVx0ZmZWa2p6aQKjAN6TapAI9BnUi2HJH+ohpnZCFTrSfUCYHdJyyXNSa+VktolTc/VOTzVOTvNSBdLeji9DimlI0mnSLpN0j3A3ZK2k/RzSW2SlkianOr1VD5b0rzU928lfVLSRSnWOyWNTvUukPRIOv/iHmKZKalFUsuG9R0DfQ/NzKxEtT6jmgXsGxFNko4HTgP2A8YDD0m6L9U5JyI+DiBpS+BDEfGapInADUBzif1NASZHxJ8lfR9YFhHHSno/cDXQBJzXQznA7sD7gL2BB4DjI+Irkm4BPiZpMXAcsGdEhKRx3QUREXOBuQBjGiZGqW+WmZkNTK3PVPMOA26IiA0R8SxwL3BAN/VGAz+W1A7MJ0twpborIv6c6+8agIi4B9he0jt6KQe4IyLeANqBOuDOVN5OtkzdAbwG/LekTwLry4jNzMwG2UhKqqU6G3iWbEbbDGxexrmvDrDv1wEiYiPwRkR0zjI3AqMi4k3gQOBG4ONsSrpmZlYFaj2pvgxsk7YXA9Ml1UnaATgCWNqlDkA98ExKbCeRzRj7YzFwIoCkI4HnI+KlXsr7JGlroD4ifkGW/PfrZ2xmZjYIavqeakS8IOn+9KswdwBtwAoggK9ExB8lvQBskLQCuAr4IXCTpJPJZoL9nX3OBq6U1Ea2TDujj/JSbAPcKmksIODL/YzNzMwGgTatMFotGtMwMRpmXFLpMMws8d9THR4ktUZEqQ+pvqXWl3/NzMyGTE0v/w4GSR8GLuxSvCYijqtEPGZmVj2cVMsUEQuBhZWOw8zMqo+Tao2bNKGeFt/DMTMbEr6namZmVhAnVTMzs4I4qZqZmRXESdXMzKwgflCpxrWv66Bx1u2VDsOsZvjDG6w3nqmamZkVxEnVzMysIE6qZmZmBXFSNTMzK4iTqpmZWUGcVM3MzAripGpmZlaQPpOqpEZJKwcrAEm/Hqy2Byo/dknNki6tdExmZla9Kv7hDxFxSKVjKEVEtAAtlY7DzMyqV6nLv3WSfixplaRfStpCUpOkJZLaJN0iaVsASYskNaft8ZLWpu19JC2VtDydMzGVv5K+HpnOvVHSY5Kuk6R07OhU1irpUkkLegpU0mxJ8yQtlvRbSZ+UdJGkdkl3Shqd6k2VdG9qc6Gkhlz5CkkrgDNz7R7Z2a+kAyU9IGmZpF9L2iOVnyLp5tTPE5Iu6u1NlfQjSS3pfT0vV97teCVtJenK9D4uk/SJHtqdmdpt2bC+o7cQzMysQKUm1YnAZRGxD/AicDxwNfDViJgMtAPf7KON04DvRUQT0Aw83U2d/YEvAXsDuwGHShoLXAF8NCKmAjuUEO/uwPuBY4BrgV9FxCTgr8DHUmL9PjAttXkl8O107k+AsyJiv17afww4PCL2B/4V+PfcsSZgOjAJmC5p517aOTcimoHJwN9LmtzHeM8F7omIA4H3AXMkbdW10YiYGxHNEdFct2V9L92bmVmRSl3+XRMRy9N2K1nSGhcR96ayecD8Ptp4ADhX0k7AzRHxRDd1lkbE0wCSlgONwCvAUxGxJtW5AZjZR193RMQbktqBOuDOVN6e2twD2Be4K02G64BnJI1L47ov1b8G+Gg37dcD89JsO4DRuWN3R0RHGsMjwC7A73uI89OSZpJdhwayHyY262W8RwHHSDon7Y8F3g082vvbYWZmQ6HUpPp6bnsDMK6Xum+yaQY8trMwIq6X9CDwMeAXkv4pIu7po5/+3vN9PfW5UdIbERGpfGNqU8CqiDg4f1JKqqX4Ftns9zhJjcCirn0nPY5B0q7AOcABEfEXSVeRe796IOD4iFhdYpxmZjaE+vsrNR3AXyQdnvZPAjpnrWuBqWl7WucJknYjm4FdCtxKtuRZitXAbil5Qba0OlCrgR0kHZxiGy1pn4h4EXhR0mGp3ok9nF8PrEvbp/QzhncArwIdknZk04y4t/EuBM7K3Wvev599m5nZIBjI76nOILun10Z2H/H8VH4xcLqkZcD4XP1PAyvTsu6+ZPdk+xQRfwXOAO6U1Aq8TJbU+y0i/kaW8C9MDyQtBzqfQj4VuCzFqR6auAj4Thpjv2bTEbECWEZ2f/Z64P5U3tt4v0W21NwmaVXaNzOzKqFNK6PVS9LWEfFKmqFdBjwREd+tdFyDpcjxjmmYGA0zLik2QLMRzH9PdWSQ1JoeJC3LcPlEpc+nmeMqsqXXKyocz2AbaeM1M6sJFf/wh1KkWdrbZmqSTgW+2KXq/RFxJlUmPaA1pkvxSRHR3l397sZrZmbVb1gk1e5ExE/Ifqe06kXEeysdg5mZDb7hsvxrZmZW9YbtTNVKM2lCPS1+sMLMbEh4pmpmZlYQJ1UzM7OCOKmamZkVxEnVzMysIH5Qqca1r+ugcdbtlQ7DzKqYPyWqOJ6pmpmZFcRJ1czMrCBOqmZmZgVxUjUzMyuIk6qZmVlBnFTNzMwK4qRqZmZWkJpNqpIWSWpO27+QNK7Atk+TdHJR7ZmZWW0YER/+EBFHF9ze5UW2Z2ZmtaGqZqqSGiU9JukqSY9Luk7SByXdL+kJSQdK2krSlZKWSlom6RPp3C0k/VTSo5JuAbbItbtW0vi0/XNJrZJWSZqZq/OKpG9LWiFpiaQde4lztqRz0vYiSRemeB6XdHgqr5N0saSVktoknZXKP5Dibk/jGJOL8TuSlktqkTRF0kJJv5F0Wq7vf5H0UGrzvB7im5naaNmwvmMAV8TMzMpRVUk1eQ/wH8Ce6XUCcBhwDvB14Fzgnog4EHgfMEfSVsDpwPqI2Av4JjC1h/Y/FxFTgWbgC5K2T+VbAUsiYj/gPuDzZcQ8KsXzpdQ3wEygEWiKiMnAdZLGAlcB0yNiEtlKwem5dn4XEU3A4lRvGnAQcB6ApKOAicCBQBMwVdIRXYOJiLkR0RwRzXVb1pcxDDMzG4hqTKprIqI9IjYCq4C7IyKAdrIkdRQwS9JyYBEwFng3cARwLUBEtAFtPbT/BUkrgCXAzmRJCuBvwIK03Zr6KtXN3Zz3QeCKiHgzxfRnYI80vsdTnXkp7k63pa/twIMR8XJE/Al4Pd0TPiq9lgEPk/3QMREzM6sK1XhP9fXc9sbc/kayeDcAx0fE6vxJkvpsWNKRZMnu4IhYL2kRWVIGeCMlb1If5bw3nTGWe15P7eTH3bk/ChDwnYi4YgB9mJnZIKnGmWpfFgJnKWVRSfun8vvIloqRtC8wuZtz64G/pIS6J9nS6mC5C/gnSaNSTNsBq4FGSe9JdU4C7i2jzYXA5yRtndqcIOmdBcZsZmYDMByT6reA0UCbpFVpH+BHwNaSHgXOJ1uK7epOYFSqcwHZEvBg+S/gdynOFcAJEfEacCowX1I72Qy05CeJI+KXwPXAA+n8G4FtCo/czMz6RZtWPK0WjWmYGA0zLql0GGZWxfz3VP8nSa0R0VzuecNxpmpmZlaVqvFBpaoh6VzgU12K50fEtysRj5mZVTcn1V6k5OkEamZmJXFSrXGTJtTT4vslZmZDwvdUzczMCuKkamZmVhAnVTMzs4I4qZqZmRXESdXMzKwgTqpmZmYFcVI1MzMriJOqmZlZQZxUzczMCuK/UlPjJL1M9ndca8144PlKBzFIanVstTouqN2x1eq4oO+x7RIRO5TbqD+msPat7s+fL6p2klpqcVxQu2Or1XFB7Y6tVscFgzc2L/+amZkVxEnVzMysIE6qtW9upQMYJLU6LqjdsdXquKB2x1ar44JBGpsfVDIzMyuIZ6pmZmYFcVI1MzMriJNqjZL0EUmrJT0paVal4ymFpJ0l/UrSI5JWSfpiKt9O0l2Snkhft03lknRpGmObpCm5tmak+k9ImlGpMeVJqpO0TNKCtL+rpAdT/D+TtHkqH5P2n0zHG3NtfC2Vr5b04cqM5O0kjZN0o6THJD0q6eBauGaSzk7/DldKukHS2OF6zSRdKek5SStzZYVdI0lTJbWncy6VpAqOa076t9gm6RZJ43LHur0WPX2/7Ol69yoi/KqxF1AH/AbYDdgcWAHsXem4Soi7AZiStrcBHgf2Bi4CZqXyWcCFafto4A5AwEHAg6l8O+Cp9HXbtL1tFYzvy8D1wIK0/3+Az6Tty4HT0/YZwOVp+zPAz9L23ulajgF2Tde4rgrGNQ/432l7c2DccL9mwARgDbBF7lqdMlyvGXAEMAVYmSsr7BoBS1NdpXM/WsFxHQWMStsX5sbV7bWgl++XPV3vXmOq1D9avwb1H9rBwMLc/teAr1U6rn6M41bgQ2SfCNWQyhrIPtAC4Args7n6q9PxzwJX5MrfVq9CY9kJuBt4P7AgffN5Pvef/61rBiwEDk7bo1I9db2O+XoVHFc9WfJRl/Jhfc3IkurvUwIZla7Zh4fzNQMauySfQq5ROvZYrvxt9YZ6XF2OHQdcl7a7vRb08P2yt/+jvb28/FubOr8hdHo6lQ0baflsf+BBYMeIeCYd+iOwY9ruaZzVOP5LgK8AG9P+9sCLEfFm2s/H+Fb86XhHql+N49oV+BPwk7S0/V+StmKYX7OIWAdcDPwOeIbsGrRSG9esU1HXaELa7lpeDT5HNnOG8sfV2//RHjmpWtWRtDVwE/CliHgpfyyyHxmH1e+BSfo48FxEtFY6lkEwimz57UcRsT/wKtlS4luG6TXbFvgE2Q8N7wK2Aj5S0aAG0XC8Rn2RdC7wJnDdUPbrpFqb1gE75/Z3SmVVT9JosoR6XUTcnIqfldSQjjcAz6XynsZZbeM/FDhG0lrgp2RLwN8Dxknq/PztfIxvxZ+O1wMvUH3jguyn96cj4sG0fyNZkh3u1+yDwJqI+FNEvAHcTHYda+GadSrqGq1L213LK0bSKcDHgRPTDwxQ/rheoOfr3SMn1dr0EDAxPbm2OdmDE7dVOKY+pScG/xt4NCL+M3foNqDzScMZZPdaO8tPTk8rHgR0pOWshcBRkrZNM46jUllFRMTXImKniGgkuxb3RMSJwK+Aaala13F1jndaqh+p/DPpSdNdgYlkD4hUTET8Efi9pD1S0QeARxjm14xs2fcgSVumf5ed4xr21yynkGuUjr0k6aD0Xp2ca2vISfoI2a2WYyJife5QT9ei2++X6fr1dL17Vokb5n4N/ovsCb7HyZ5qO7fS8ZQY82FkS1BtwPL0Oprs3sbdwBPA/wW2S/UFXJbG2A4059r6HPBkep1a6bHl4jqSTU//7pb+Uz8JzAfGpPKxaf/JdHy33PnnpvGuZoiesCxhTE1AS7puPyd7MnTYXzPgPOAxYCVwDdlTo8PymgE3kN0bfoNsdeEfi7xGQHN6n34D/IAuD64N8bieJLtH2vk95PK+rgU9fL/s6Xr39vLHFJqZmRXEy79mZmYFcVI1MzMriJOqmZlZQZxUzczMCuKkamZmVhAnVTMzs4I4qZqZmRXk/wOt+9wyU2lLXwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc0AAAD4CAYAAACOhb23AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAee0lEQVR4nO3deZRdVZn38e+PIiRAsAIksqojUoJpEEgokgIFQxonUOyXQaKhoSFgL9MMouKiJS0uDdi2QLSlURDC20gQRDsMwgKZGgjkRUKoIpWqBAggiS0RQYYUYCRA5Xn/OLvkcq3h3Bpyh/p91rqrzt1nn72ffU/Bk73PqXMVEZiZmVn/tih3AGZmZtXCSdPMzCwnJ00zM7OcnDTNzMxyctI0MzPLactyB2DDa/z48dHY2FjuMMzMqkpra+sLETGhuNxJs8Y1NjbS0tJS7jDMzKqKpN/2VO7lWTMzs5ycNM3MzHJy0jQzM8vJSdPMzCwnJ00zM7OcnDTNzMxyctI0MzPLyUnTzMwsJz/coMZ1rOukce6t5Q7DzGzYrD3v05utL880zczMcnLSNDMzy8lJ08zMLCcnTTMzs5ycNM3MzHJy0jQzM8vJSbOApNeGoc3DJc1N20dK2nMAbSyW1DzUsZmZWWmcNIdZRNwcEeelt0cCJSdNMzOrDE6aPVBmvqSVkjokzUrlB6dZ33WSHpd0jSSlfYelslZJF0m6JZWfKOlHkg4EDgfmS2qTtFvhDFLSeElr0/bWkn4u6TFJNwJbF8R2iKQHJT0iaZGksZv30zEzG7n8RKCefQZoAvYBxgMPS7o/7dsX2Av4PfAA8GFJLcBlwIyIWCPp2uIGI+LXkm4GbomI6wBSvu3JKcCGiPiApCnAI6n+eOAbwMcj4k+SzgK+CpxbeLCkOcAcgLp3TRjYJ2BmZn/FM82eTQeujYiuiHgOuA/YL+1bFhHPRMQmoA1oBPYAno6INanOXyXNEs0ArgaIiHagPZV/iGx59wFJbcBsYJfigyNiQUQ0R0Rz3Tb1gwzFzMy6eaZZuo0F210M7jN8i7f/4TImR30Bd0XEPwyiTzMzGyDPNHu2BJglqU7SBLKZ37I+6q8GdpXUmN7P6qXeq8B2Be/XAtPS9syC8vuBYwEk7Q1MSeVLyZaD35/2bSvpb/MMyMzMBs9Js2c3ki2JrgDuAb4WEX/orXJE/Bk4FbhdUitZcuzsoerPgX+RtFzSbsD3gFMkLSe7dtrtx8BYSY+RXa9sTf38ETgRuFZSO/Ag2dKwmZltBoqIcsdQEySNjYjX0t20FwNPRsQPyh3X6IZJ0TD7wnKHYWY2bIbjq8EktUbEX/19vGeaQ+cL6eacVUA92d20ZmZWQ3wj0BBJs8qyzyzNzGz4eKZpZmaWk5OmmZlZTk6aZmZmOfmaZo2bPLGelmG4s8zMbCTyTNPMzCwnJ00zM7OcnDTNzMxyctI0MzPLyTcC1biOdZ00zr213GGYmW1Ww/FoPfBM08zMLDcnTTMzs5ycNM3MzHJy0jQzM8vJSdPMzCwnJ00zM7OcnDRLIOm1fvaPk3Rqwfu/kXRd2m6SdNgA+pwn6czSozUzs6HmpDm0xgF/SZoR8fuImJneNgElJ00zM6scTpoDIGmspLslPSKpQ9IRadd5wG6S2iTNl9QoaaWkrYBzgVlp36ziGWSq15i2z5b0hKT/B+xeUGc3SbdLapW0RNIem2/UZmbmJwINzOvAURHxiqTxwFJJNwNzgb0jogmgOwlGxBuSvgk0R8QX0755PTUsaRpwDNnMdEvgEaA17V4AnBwRT0r6IHAJ8NEe2pgDzAGoe9eEIRiumZmBk+ZACfh3STOATcBEYKchavsg4MaI2ACQkjGSxgIHAoskddcd3VMDEbGALMEyumFSDFFcZmYjnpPmwBwHTACmRcSbktYCY0ps4y3euTze3/FbAOu7Z7FmZrb5+ZrmwNQDz6eE+RFgl1T+KrBdL8cU71sLTAWQNBV4Xyq/HzhS0taStgP+D0BEvAKskfTZdIwk7TN0QzIzs/44aQ7MNUCzpA7gBOBxgIh4EXgg3dQzv+iYe4E9u28EAq4HdpC0Cvgi8ERq4xHgF8AK4Dbg4YI2jgP+SdIKYBVwBGZmttkowpe8atnohknRMPvCcodhZrZZDfarwSS1RkRzcblnmmZmZjk5aZqZmeXkpGlmZpaTk6aZmVlO/jvNGjd5Yj0tg7wgbmZmGc80zczMcnLSNDMzy8lJ08zMLCcnTTMzs5x8I1CN61jXSePcW8sdhlnFGOyTYmxk80zTzMwsJydNMzOznJw0zczMcnLSNDMzy8lJ08zMLCcnTTMzs5xGRNKU1ChpZRn6fa3E+vMkndlDeVniNzOzdxoRSdPMzGwojKSkWSfpckmrJN0paWtJTZKWSmqXdKOk7QEkLZbUnLbHS1qbtveStExSWzpmUir/x4LyyyTVdXcq6TuSVqR+dkpljZLuSW3cLem9xcFKmpaOWwGcVlDeYwxmZjb8RlLSnARcHBF7AeuBo4GrgLMiYgrQAXyrnzZOBv4zIpqAZuAZSR8AZgEfTuVdwHGp/rbA0ojYB7gf+EIq/yGwMPV7DXBRD339BDg9HdtnDMUHSpojqUVSS9eGzn6GZGZmeY2kpLkmItrSdiuwGzAuIu5LZQuBGf208SDwdUlnAbtExJ+BjwHTgIcltaX3u6b6bwC3FPTZmLYPAH6Wtn8KTC/sRNK4FNv9BXX6iuEdImJBRDRHRHPdNvX9DMnMzPIaSUlzY8F2FzCuj7pv8fZnM6a7MCJ+BhwO/Bn4laSPAiKbNTal1+4RMS8d8mZEREGfg37Wby8xmJnZZjCSkmaxTuBlSQel98cD3bPOtWSzR4CZ3QdI2hV4OiIuAm4CpgB3AzMlvTvV2UHSLv30/WvgmLR9HLCkcGdErAfWS5peUKevGMzMbDMYyUkTYDYwX1I70AScm8q/B5wiaTkwvqD+54CVaRl2b+CqiHgU+AZwZ2rnLqChn35PB05K9Y8HvtxDnZOAi1Nf6iuGXCM1M7NB09urh1aLRjdMiobZF5Y7DLOK4a8GszwktUZEc3H5SJ9pmpmZ5eakaWZmlpOTppmZWU5OmmZmZjkN+u8GrbJNnlhPi298MDMbEp5pmpmZ5eSkaWZmlpOTppmZWU5OmmZmZjn5RqAa17Guk8a5t5Y7DDMbBn660ebnmaaZmVlOTppmZmY5OWmamZnl5KRpZmaWk5OmmZlZTk6aZmZmOTlpDgNJjZJW5qhzbMH7ZkkXDX90ZmY2UE6a5dMI/CVpRkRLRHypfOGYmVl/RmTSTLO8xyVdI+kxSddJ2kbSxyQtl9Qh6QpJo1P9tZIuSOXLJL0/lV8paWZBu6/10tcSSY+k14Fp13nAQZLaJJ0h6WBJt6RjdpD0S0ntkpZKmpLK56W4Fkt6WpKTrJnZZjQik2ayO3BJRHwAeAX4KnAlMCsiJpM9LemUgvqdqfxHwIUl9PM88ImImArMArqXYOcCSyKiKSJ+UHTMOcDyiJgCfB24qmDfHsChwP7AtySNKu5Q0hxJLZJaujZ0lhCqmZn1ZSQnzd9FxANp+2rgY8CaiHgilS0EZhTUv7bg5wEl9DMKuFxSB7AI2DPHMdOBnwJExD3AjpLelfbdGhEbI+IFsoS8U/HBEbEgIpojorlum/oSQjUzs76M5GfPRtH79cCOOet3b79F+oeHpC2ArXo47gzgOWCfVPf1AcRaaGPBdhcj+xyamW1WI3mm+V5J3TPGY4EWoLH7eiVwPHBfQf1ZBT8fTNtrgWlp+3CyWWWxeuDZiNiU2qxL5a8C2/US2xLgOABJBwMvRMQreQZlZmbDZyTPUlYDp0m6AngU+BKwFFgkaUvgYeDSgvrbS2onm+n9Qyq7HLhJ0grgduBPPfRzCXC9pBOK6rQDXenYK4HlBcfMA65I/W0AZg9uqGZmNhQUUbxKWfskNQK3RMTeOeuvBZrTdcSqMrphUjTMvrDcYZjZMPBXgw0fSa0R0VxcPpKXZ83MzEoyIpdnI2ItkGuWmeo3DlswZmZWNTzTNDMzy8lJ08zMLCcnTTMzs5xG5DXNkWTyxHpafIedmdmQ8EzTzMwsJydNMzOznJw0zczMcnLSNDMzy8k3AtW4jnWdNM69tdxhmFUtP6rOCnmmaWZmlpOTppmZWU5OmmZmZjk5aZqZmeXkpGlmZpaTk6aZmVlOFZc0JY2TdGo/dRolHZujrUZJK/vYf6KkHw0kzqE43szMqkvFJU1gHNBn0gQagX6TZrlI8t+/mpnVoEpMmucBu0lqkzQ/vVZK6pA0q6DOQanOGWlGuUTSI+l1YAn97SxpsaQnJX2ru1DSP0palvq4TFJdKj9J0hOSlgEfLqh/paRLJT0EXCCpSdJSSe2SbpS0farXW/liST+Q1CLpMUn7SbohxfVvqc62km6VtCJ9JrMwM7PNphKT5lzgNxHRBCwFmoB9gI8D8yU1pDpLIqIpIn4APA98IiKmArOAi0rob3/gaGAK8FlJzZI+kNr5cIqjCzgu9X0OWbKcDuxZ1NZ7gAMj4qvAVcBZETEF6AC6E3Jv5QBvREQzcClwE3AasDdwoqQdgU8Cv4+IfSJib+D2ngYkaU5Kvi1dGzpL+CjMzKwvlb6MOB24NiK6gOck3QfsB7xSVG8U8CNJTWQJ7m9L6OOuiHgRQNINqc+3gGnAw5IAtiZLzB8EFkfEH1P9XxT1tSgiuiTVA+Mi4r5UvhBY1Ft5wfE3p58dwKqIeDb18zSwcyr/vqTzgVsiYklPA4qIBcACgNENk6KEz8LMzPpQ6UkzrzOA58hmpFsAr5dwbHFSCUDAwoj418Idko7sp60/ldBvTzamn5sKtrvfbxkRT0iaChwG/JukuyPi3EH2aWZmOVXi8uyrwHZpewkwS1KdpAnADGBZUR2AeuDZiNgEHA/UldDfJyTtIGlr4EjgAeBuYKakdwOk/bsADwF/J2lHSaOAz/bUYER0Ai9LOigVHQ/c11t53kAl/Q2wISKuBuYDU0sYp5mZDVLFzTQj4kVJD6Q/FbkNaAdWkM0AvxYRf5D0ItAlaQVwJXAJcL2kE8iu85Uy41sGXE92PfLqiGgBkPQN4E5JWwBvAqdFxFJJ84AHgfVAWx/tzgYulbQN8DRwUj/leUwmu667KcV0SgnHmpnZICnCl7xq2eiGSdEw+8Jyh2FWtfzVYCOTpNZ0Y+Y7VOLyrJmZWUWquOXZ4SDpUOD8ouI1EXFUOeIxM7PqNCKSZkTcAdxR7jjMzKy6eXnWzMwspxEx0xzJJk+sp8U3MpiZDQnPNM3MzHJy0jQzM8vJSdPMzCwnJ00zM7OcfCNQjetY10nj3FvLHYbZiOcnC9UGzzTNzMxyctI0MzPLyUnTzMwsJydNMzOznJw0zczMcnLSNDMzy8lJ08zMLKeaTpqSxkk6tZ86jZKOzdFWo6SVQxedmZlVm5pOmsA4oM+kCTQC/SbNUkjyQyPMzGpQrSfN84DdJLVJmp9eKyV1SJpVUOegVOeMNKNcIumR9DowT0eSTpR0s6R7gLsl7SDpl5LaJS2VNCXV6618nqSFqe/fSvqMpAtSrLdLGpXqnSfp0XT893qJZY6kFkktXRs6B/sZmplZUuszornA3hHRJOlo4GRgH2A88LCk+1OdMyPi7wEkbQN8IiJelzQJuBZoztnfVGBKRLwk6YfA8og4UtJHgauAJuCcXsoBdgM+AuwJPAgcHRFfk3Qj8GlJS4CjgD0iIiSN6ymIiFgALAAY3TApcsZuZmb9qPWZZqHpwLUR0RURzwH3Afv1UG8UcLmkDmARWQLL666IeKmgv58CRMQ9wI6S3tVHOcBtEfEm0AHUAben8g6yZeRO4HXgvyR9BthQQmxmZjZIIylp5nUG8BzZjLQZ2KqEY/80yL43AkTEJuDNiOieJW4CtoyIt4D9geuAv+ftpGpmZptBrSfNV4Ht0vYSYJakOkkTgBnAsqI6APXAsylxHU824xuIJcBxAJIOBl6IiFf6KO+XpLFAfUT8iiy57zPA2MzMbABq+ppmRLwo6YH0pyK3Ae3ACiCAr0XEHyS9CHRJWgFcCVwCXC/pBLKZ3EBnj/OAKyS1ky2jzu6nPI/tgJskjQEEfHWAsZmZ2QDo7RVAq0WjGyZFw+wLyx2G2Yjn79OsLpJaI+KvbgKt9eVZMzOzIVPTy7PDQdKhwPlFxWsi4qhyxGNmZpuPk2aJIuIO4I5yx2FmZpufk2aNmzyxnhZfSzEzGxK+pmlmZpaTk6aZmVlOTppmZmY5OWmamZnl5BuBalzHuk4a595a7jDMcvNDAKySeaZpZmaWk5OmmZlZTk6aZmZmOTlpmpmZ5eSkaWZmlpOTppmZWU5OmmZmZjn1mzQlNUpaOVwBSPr1cLU9WIVjl9Qs6aJyx2RmZuVT9ocbRMSB5Y4hj4hoAVrKHYeZmZVP3uXZOkmXS1ol6U5JW0tqkrRUUrukGyVtDyBpsaTmtD1e0tq0vZekZZLa0jGTUvlr6efB6djrJD0u6RpJSvsOS2Wtki6SdEtvgUqaJ2mhpCWSfivpM5IukNQh6XZJo1K9aZLuS23eIamhoHyFpBXAaQXtHtzdr6T9JT0oabmkX0vaPZWfKOmG1M+Tki7o60OV9GNJLelzPaegvMfxStpW0hXpc1wu6Yhe2p2T2m3p2tDZVwhmZlaCvElzEnBxROwFrAeOBq4CzoqIKUAH8K1+2jgZ+M+IaAKagWd6qLMv8BVgT2BX4MOSxgCXAZ+KiGnAhBzx7gZ8FDgcuBq4NyImA38GPp0S5w+BmanNK4DvpGN/ApweEfv00f7jwEERsS/wTeDfC/Y1AbOAycAsSTv30c7ZEdEMTAH+TtKUfsZ7NnBPROwPfASYL2nb4kYjYkFENEdEc9029X10b2Zmpci7PLsmItrSditZUhoXEfelsoXAon7aeBA4W9J7gBsi4ske6iyLiGcAJLUBjcBrwNMRsSbVuRaY009ft0XEm5I6gDrg9lTekdrcHdgbuCtNZuuAZyWNS+O6P9X/KfCpHtqvBxam2XIAowr23R0RnWkMjwK7AL/rJc7PSZpDdh4ayP6xsEUf4z0EOFzSmen9GOC9wGN9fhpmZjYk8ibNjQXbXcC4Puq+xdsz2DHdhRHxM0kPAZ8GfiXpnyPinn76Geg1142pz02S3oyISOWbUpsCVkXEAYUHpaSZx7fJZq9HSWoEFhf3nfQ6BknvA84E9ouIlyVdScHn1QsBR0fE6pxxmpnZEBron5x0Ai9LOii9Px7onnWuBaal7ZndB0jalWwGdRFwE9mSZB6rgV1TcoJs6XOwVgMTJB2QYhslaa+IWA+slzQ91Tuul+PrgXVp+8QBxvAu4E9Ap6SdeHtG29d47wBOL7jWu+8A+zYzswEYzN9pzia7ptZOdh3v3FT+PeAUScuB8QX1PwesTMuue5NdE+1XRPwZOBW4XVIr8CpZ0h6wiHiDLKGfn274aQO67+I9Cbg4xalemrgA+G4a44BmwxGxAlhOdn30Z8ADqbyv8X6bbCm4XdKq9N7MzDYTvb1yWbkkjY2I19IM62LgyYj4QbnjGi5DOd7RDZOiYfaFQxqf2XDy92laJZDUmm7UfIdqeSLQF9LMbxXZ0uhl5Q1n2I208ZqZVYWyP9wgjzTLesdMS9JJwJeLqj4QEadRYdINUKOLio+PiI6e6vc0XjMzK7+qSJo9iYifkP1NZcWLiA+WOwYzMxu8almeNTMzK7uqnWlaPpMn1tPiGyvMzIaEZ5pmZmY5OWmamZnl5KRpZmaWk5OmmZlZTr4RqMZ1rOukce6t5Q7DzCqIn7o0cJ5pmpmZ5eSkaWZmlpOTppmZWU5OmmZmZjk5aZqZmeXkpGlmZpaTk6aZmVlONZs0JS2W1Jy2fyVp3BC2fbKkE4aqPTMzqw4j4uEGEXHYELd36VC2Z2Zm1aGiZpqSGiU9LulKSU9IukbSxyU9IOlJSftL2lbSFZKWSVou6Yh07NaSfi7pMUk3AlsXtLtW0vi0/UtJrZJWSZpTUOc1Sd+RtELSUkk79RHnPElnpu3Fks5P8Twh6aBUXifpe5JWSmqXdHoq/1iKuyONY3RBjN+V1CapRdJUSXdI+o2kkwv6/hdJD6c2z+klvjmpjZauDZ2DOCNmZlaoopJm8n7g+8Ae6XUsMB04E/g6cDZwT0TsD3wEmC9pW+AUYENEfAD4FjCtl/Y/HxHTgGbgS5J2TOXbAksjYh/gfuALJcS8ZYrnK6lvgDlAI9AUEVOAaySNAa4EZkXEZLKZ/ikF7fxvRDQBS1K9mcCHgHMAJB0CTAL2B5qAaZJmFAcTEQsiojkimuu2qS9hGGZm1pdKTJprIqIjIjYBq4C7IyKADrIkdAgwV1IbsBgYA7wXmAFcDRAR7UB7L+1/SdIKYCmwM1kSAngDuCVtt6a+8rqhh+M+DlwWEW+lmF4Cdk/jeyLVWZji7nZz+tkBPBQRr0bEH4GN6ZrsIem1HHiE7B8VkzAzs82iEq9pbizY3lTwfhNZvF3A0RGxuvAgSf02LOlgsmR2QERskLSYLOkCvJmSM6mPUj6b7hhLPa63dgrH3f1+S0DAdyPiskH0YWZmA1SJM83+3AGcrpQlJe2byu8nW8pF0t7AlB6OrQdeTglzD7Klz+FyF/DPkrZMMe0ArAYaJb0/1TkeuK+ENu8APi9pbGpzoqR3D2HMZmbWh2pMmt8GRgHtklal9wA/BsZKegw4l2yptNjtwJapznlkS7TD5f8C/5viXAEcGxGvAycBiyR1kM0gc9+JGxF3Aj8DHkzHXwdsN+SRm5lZj/T2iqTVotENk6Jh9oXlDsPMKoi/T7N/klojorm4vBpnmmZmZmVRiTcCVQxJZwOfLSpeFBHfKUc8ZmZWXk6afUjJ0QnSzMwAJ82aN3liPS2+fmFmNiR8TdPMzCwnJ00zM7OcnDTNzMxyctI0MzPLyUnTzMwsJydNMzOznJw0zczMcnLSNDMzy8lJ08zMLCd/y0mNk/Qq2fd4VrvxwAvlDmKQamEM4HFUkloYA1TmOHaJiAnFhX6MXu1b3dPX21QbSS3VPo5aGAN4HJWkFsYA1TUOL8+amZnl5KRpZmaWk5Nm7VtQ7gCGSC2MoxbGAB5HJamFMUAVjcM3ApmZmeXkmaaZmVlOTppmZmY5OWnWKEmflLRa0lOS5pY7nv5IWiupQ1KbpJZUtoOkuyQ9mX5un8ol6aI0tnZJU8sY9xWSnpe0sqCs5LglzU71n5Q0uwLGME/SunQ+2iQdVrDvX9MYVks6tKC8rL9zknaWdK+kRyWtkvTlVF4156OPMVTV+ZA0RtIySSvSOM5J5e+T9FCK6ReStkrlo9P7p9L+xv7GVzYR4VeNvYA64DfArsBWwApgz3LH1U/Ma4HxRWUXAHPT9lzg/LR9GHAbIOBDwENljHsGMBVYOdC4gR2Ap9PP7dP29mUewzzgzB7q7pl+n0YD70u/Z3WV8DsHNABT0/Z2wBMp3qo5H32MoarOR/pMx6btUcBD6TP+b+CYVH4pcEraPhW4NG0fA/yir/Ftzt+r4pdnmrVpf+CpiHg6It4Afg4cUeaYBuIIYGHaXggcWVB+VWSWAuMkNZQhPiLifuClouJS4z4UuCsiXoqIl4G7gE8Oe/BJL2PozRHAzyNiY0SsAZ4i+30r++9cRDwbEY+k7VeBx4CJVNH56GMMvanI85E+09fS21HpFcBHgetSefG56D5H1wEfkyR6H1/ZOGnWponA7wreP0Pf/+FVggDulNQqaU4q2ykink3bfwB2StuVPr5S467U8XwxLVte0b2kSZWMIS3v7Us2w6nK81E0Bqiy8yGpTlIb8DzZPzx+A6yPiLd6iOkv8ab9ncCOVMA4ijlpWqWYHhFTgU8Bp0maUbgzsrWaqvv7qGqNG/gxsBvQBDwLfL+s0ZRA0ljgeuArEfFK4b5qOR89jKHqzkdEdEVEE/AestnhHuWNaGg4adamdcDOBe/fk8oqVkSsSz+fB24k+4/sue5l1/Tz+VS90sdXatwVN56IeC79T28TcDlvL4lV9BgkjSJLNtdExA2puKrOR09jqNbzARAR64F7gQPIlsC7n3leGNNf4k3764EXqaBxdHPSrE0PA5PSnWpbkV1Yv7nMMfVK0raStuveBg4BVpLF3H3n4mzgprR9M3BCuvvxQ0BnwfJbJSg17juAQyRtn5bdDkllZVN0jfgosvMB2RiOSXc7vg+YBCyjAn7n0jWw/wIei4j/KNhVNeejtzFU2/mQNEHSuLS9NfAJsuuz9wIzU7Xic9F9jmYC96RVgd7GVz7lvAvJr+F7kd0Z+ATZdYSzyx1PP7HuSnaH3ApgVXe8ZNc07gaeBP4H2CGVC7g4ja0DaC5j7NeSLZe9SXa95Z8GEjfwebKbHJ4CTqqAMfw0xdhO9j+uhoL6Z6cxrAY+VSm/c8B0sqXXdqAtvQ6rpvPRxxiq6nwAU4DlKd6VwDdT+a5kSe8pYBEwOpWPSe+fSvt37W985Xr5MXpmZmY5eXnWzMwsJydNMzOznJw0zczMcnLSNDMzy8lJ08zMLCcnTTMzs5ycNM3MzHL6/xT29zgweRDLAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -318,7 +399,7 @@ ], "source": [ "import matplotlib.pyplot as plt\n", - "plt.barh(automl.model.estimator.feature_name_, automl.model.estimator.feature_importances_)" + "plt.barh(automl.feature_names_in_, automl.feature_importances_)" ] }, { @@ -351,8 +432,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "Predicted labels [143391.65036598 245535.13731975 153171.44071644 ... 184354.52735665\n", - " 235510.49470402 282617.22858849]\n", + "Predicted labels [162131.66541776 261207.15681479 157976.50985102 ... 205999.47588989\n", + " 223985.57564169 277733.77442341]\n", "True labels 14740 136900.0\n", "10101 241300.0\n", "20566 200700.0\n", @@ -389,9 +470,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "r2 = 0.8505434326525669\n", - "mse = 1975592613.1389656\n", - "mae = 29471.536046101864\n" + "r2 = 0.8522136092023422\n", + "mse = 1953515373.4904487\n", + "mae = 29086.15911420206\n" ] } ], @@ -418,13 +499,11 @@ "output_type": "stream", "text": [ "{'Current Learner': 'lgbm', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 4, 'num_leaves': 4, 'min_child_samples': 20, 'learning_rate': 0.09999999999999995, 'log_max_bin': 8, 'colsample_bytree': 1.0, 'reg_alpha': 0.0009765625, 'reg_lambda': 1.0}, 'Best Learner': 'lgbm', 'Best Hyper-parameters': {'n_estimators': 4, 'num_leaves': 4, 'min_child_samples': 20, 'learning_rate': 0.09999999999999995, 'log_max_bin': 8, 'colsample_bytree': 1.0, 'reg_alpha': 0.0009765625, 'reg_lambda': 1.0}}\n", - "{'Current Learner': 'lgbm', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 4, 'num_leaves': 12, 'min_child_samples': 15, 'learning_rate': 0.2284139062380884, 'log_max_bin': 9, 'colsample_bytree': 1.0, 'reg_alpha': 0.0014700173967242716, 'reg_lambda': 7.624911621832711}, 'Best Learner': 'lgbm', 'Best Hyper-parameters': {'n_estimators': 4, 'num_leaves': 12, 'min_child_samples': 15, 'learning_rate': 0.2284139062380884, 'log_max_bin': 9, 'colsample_bytree': 1.0, 'reg_alpha': 0.0014700173967242716, 'reg_lambda': 7.624911621832711}}\n", - "{'Current Learner': 'lgbm', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 4, 'num_leaves': 21, 'min_child_samples': 12, 'learning_rate': 0.5082200481556807, 'log_max_bin': 8, 'colsample_bytree': 0.9696263001275751, 'reg_alpha': 0.0028107036379524425, 'reg_lambda': 3.716898117989413}, 'Best Learner': 'lgbm', 'Best Hyper-parameters': {'n_estimators': 4, 'num_leaves': 21, 'min_child_samples': 12, 'learning_rate': 0.5082200481556807, 'log_max_bin': 8, 'colsample_bytree': 0.9696263001275751, 'reg_alpha': 0.0028107036379524425, 'reg_lambda': 3.716898117989413}}\n", - "{'Current Learner': 'lgbm', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 20, 'num_leaves': 12, 'min_child_samples': 15, 'learning_rate': 0.2284139062380884, 'log_max_bin': 9, 'colsample_bytree': 1.0, 'reg_alpha': 0.0014700173967242718, 'reg_lambda': 7.624911621832699}, 'Best Learner': 'lgbm', 'Best Hyper-parameters': {'n_estimators': 20, 'num_leaves': 12, 'min_child_samples': 15, 'learning_rate': 0.2284139062380884, 'log_max_bin': 9, 'colsample_bytree': 1.0, 'reg_alpha': 0.0014700173967242718, 'reg_lambda': 7.624911621832699}}\n", - "{'Current Learner': 'lgbm', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 78, 'num_leaves': 10, 'min_child_samples': 24, 'learning_rate': 0.07647794276357107, 'log_max_bin': 10, 'colsample_bytree': 1.0, 'reg_alpha': 0.001749539645587163, 'reg_lambda': 4.373760956394571}, 'Best Learner': 'lgbm', 'Best Hyper-parameters': {'n_estimators': 78, 'num_leaves': 10, 'min_child_samples': 24, 'learning_rate': 0.07647794276357107, 'log_max_bin': 10, 'colsample_bytree': 1.0, 'reg_alpha': 0.001749539645587163, 'reg_lambda': 4.373760956394571}}\n", - "{'Current Learner': 'lgbm', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 171, 'num_leaves': 15, 'min_child_samples': 49, 'learning_rate': 0.09991937598563264, 'log_max_bin': 9, 'colsample_bytree': 1.0, 'reg_alpha': 0.0009940547384005775, 'reg_lambda': 1.1214041135390789}, 'Best Learner': 'lgbm', 'Best Hyper-parameters': {'n_estimators': 171, 'num_leaves': 15, 'min_child_samples': 49, 'learning_rate': 0.09991937598563264, 'log_max_bin': 9, 'colsample_bytree': 1.0, 'reg_alpha': 0.0009940547384005775, 'reg_lambda': 1.1214041135390789}}\n", - "{'Current Learner': 'lgbm', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 230, 'num_leaves': 61, 'min_child_samples': 58, 'learning_rate': 0.11237861230007634, 'log_max_bin': 9, 'colsample_bytree': 0.9596144262255549, 'reg_alpha': 0.0009765625, 'reg_lambda': 20.911712312854934}, 'Best Learner': 'lgbm', 'Best Hyper-parameters': {'n_estimators': 230, 'num_leaves': 61, 'min_child_samples': 58, 'learning_rate': 0.11237861230007634, 'log_max_bin': 9, 'colsample_bytree': 0.9596144262255549, 'reg_alpha': 0.0009765625, 'reg_lambda': 20.911712312854934}}\n", - "{'Current Learner': 'lgbm', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 363, 'num_leaves': 216, 'min_child_samples': 42, 'learning_rate': 0.09100963138990395, 'log_max_bin': 8, 'colsample_bytree': 0.8025848209352517, 'reg_alpha': 0.001113000336715291, 'reg_lambda': 76.50614276906414}, 'Best Learner': 'lgbm', 'Best Hyper-parameters': {'n_estimators': 363, 'num_leaves': 216, 'min_child_samples': 42, 'learning_rate': 0.09100963138990395, 'log_max_bin': 8, 'colsample_bytree': 0.8025848209352517, 'reg_alpha': 0.001113000336715291, 'reg_lambda': 76.50614276906414}}\n" + "{'Current Learner': 'lgbm', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 22, 'num_leaves': 4, 'min_child_samples': 18, 'learning_rate': 0.2293009676418639, 'log_max_bin': 9, 'colsample_bytree': 0.9086551727646448, 'reg_alpha': 0.0015561782752413472, 'reg_lambda': 0.33127416269768944}, 'Best Learner': 'lgbm', 'Best Hyper-parameters': {'n_estimators': 22, 'num_leaves': 4, 'min_child_samples': 18, 'learning_rate': 0.2293009676418639, 'log_max_bin': 9, 'colsample_bytree': 0.9086551727646448, 'reg_alpha': 0.0015561782752413472, 'reg_lambda': 0.33127416269768944}}\n", + "{'Current Learner': 'lgbm', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 28, 'num_leaves': 20, 'min_child_samples': 17, 'learning_rate': 0.32352862101602586, 'log_max_bin': 10, 'colsample_bytree': 0.8801327898366843, 'reg_alpha': 0.004475520554844502, 'reg_lambda': 0.033081571878574946}, 'Best Learner': 'lgbm', 'Best Hyper-parameters': {'n_estimators': 28, 'num_leaves': 20, 'min_child_samples': 17, 'learning_rate': 0.32352862101602586, 'log_max_bin': 10, 'colsample_bytree': 0.8801327898366843, 'reg_alpha': 0.004475520554844502, 'reg_lambda': 0.033081571878574946}}\n", + "{'Current Learner': 'lgbm', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 44, 'num_leaves': 81, 'min_child_samples': 29, 'learning_rate': 0.26477481203117526, 'log_max_bin': 10, 'colsample_bytree': 1.0, 'reg_alpha': 0.0009765625, 'reg_lambda': 0.028486834222229064}, 'Best Learner': 'lgbm', 'Best Hyper-parameters': {'n_estimators': 44, 'num_leaves': 81, 'min_child_samples': 29, 'learning_rate': 0.26477481203117526, 'log_max_bin': 10, 'colsample_bytree': 1.0, 'reg_alpha': 0.0009765625, 'reg_lambda': 0.028486834222229064}}\n", + "{'Current Learner': 'lgbm', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 44, 'num_leaves': 70, 'min_child_samples': 19, 'learning_rate': 0.182061387379683, 'log_max_bin': 10, 'colsample_bytree': 1.0, 'reg_alpha': 0.0009765625, 'reg_lambda': 0.001534805484993033}, 'Best Learner': 'lgbm', 'Best Hyper-parameters': {'n_estimators': 44, 'num_leaves': 70, 'min_child_samples': 19, 'learning_rate': 0.182061387379683, 'log_max_bin': 10, 'colsample_bytree': 1.0, 'reg_alpha': 0.0009765625, 'reg_lambda': 0.001534805484993033}}\n", + "{'Current Learner': 'lgbm', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 34, 'num_leaves': 178, 'min_child_samples': 14, 'learning_rate': 0.16444778912464286, 'log_max_bin': 9, 'colsample_bytree': 0.8963761466973907, 'reg_alpha': 0.0009765625, 'reg_lambda': 0.027857858022692302}, 'Best Learner': 'lgbm', 'Best Hyper-parameters': {'n_estimators': 34, 'num_leaves': 178, 'min_child_samples': 14, 'learning_rate': 0.16444778912464286, 'log_max_bin': 9, 'colsample_bytree': 0.8963761466973907, 'reg_alpha': 0.0009765625, 'reg_lambda': 0.027857858022692302}}\n" ] } ], @@ -448,7 +527,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8GearUAAAc/UlEQVR4nO3df7xVdZ3v8debI8rx55FABw4glEj5oyTJruWUOjmgU4JpjnpnbtotdCadRr2UNGam15tF2bXHJR10TO2qiIaIRjFO/qj8BSgqguHgj4SDP1DEX51E4DN/rHVosd1ns4Gz9t5nr/fz8diPs9d3fddan73E/dnf73et71JEYGZmxdWn3gGYmVl9ORGYmRWcE4GZWcE5EZiZFZwTgZlZwTkRmJkVnBOBWQWS/lLS0nrHYZYnJwJrWJKek/SZesYQEb+NiFF57V/SWEm/kfSmpFWS7pV0TF7HMyvHicAKTVJLHY99PHAzcB0wBNgTOB/43FbsS5L8/7NtFf/DsV5HUh9J50p6WtKrkmZI6p9Zf7OkFyW9nv7a3i+z7hpJl0uaI+lt4PC05fG/JD2ebnOTpH5p/cMkrchs323ddP3XJb0gaaWkL0sKSXuX+QwCLgUuioirIuL1iNgQEfdGxFfSOhdI+v+ZbYan+9suXb5H0sWS7gP+CEyStKDkOGdJmp2+30HSDyQ9L+klSVdIat3G/xzWBJwIrDc6E5gAfBoYDLwGTM2s/yUwEtgDeAS4vmT7k4GLgV2A36VlJwDjgBHAh4FTKhy/bF1J44Czgc8AewOHVdjHKGAocEuFOtX4e2AiyWe5AhglaWRm/cnADen7S4B9gAPT+NpJWiBWcE4E1hudDvxLRKyIiHeAC4Dju34pR8TVEfFmZt1HJO2W2f62iLgv/QX+p7TsxxGxMiJWA7eTfFl2p7u6JwA/jYjFEfHH9NjdeV/694VqP3Q3rkmPty4iXgduA04CSBPCB4HZaQtkInBWRKyOiDeB/wOcuI3HtybgRGC90V7ArZLWSFoDPAmsB/aU1CLpkrTb6A3guXSbAZntl5fZ54uZ938Edq5w/O7qDi7Zd7njdHk1/TuoQp1qlB7jBtJEQNIamJUmpYHAjsDDmfP2q7TcCs6JwHqj5cBREdGWefWLiA6SL7/xJN0zuwHD022U2T6vKXdfIBn07TK0Qt2lJJ/juAp13ib58u7yF2XqlH6WO4GBkg4kSQhd3UKvAJ3AfplztltEVEp4VhBOBNbo+krql3ltR9IXfrGkvQAkDZQ0Pq2/C/AOyS/uHUm6P2plBnCqpA9J2hH4VncVI5n//WzgW5JOlbRrOgh+qKRpabVHgU9JGpZ2bU3eXAAR8S7JlUhTgP4kiYGI2ABcCfxI0h4Aktoljd3qT2tNw4nAGt0ckl+yXa8LgMuA2cC/S3oTeBD4eFr/OuAPQAewJF1XExHxS+DHwN3Assyx3+mm/i3A3wJfAlYCLwH/m6Sfn4i4E7gJeBx4GLijylBuIGkR3RwR6zLl3+iKK+02+w+SQWsrOPnBNGb5kPQh4Algh5IvZLOG4haBWQ+SdGx6vf7uwPeA250ErNE5EZj1rNOAl4GnSa5k+of6hmO2ee4aMjMrOLcIzMwKbrt6B7ClBgwYEMOHD693GGZmvcrDDz/8SkSUvYGw1yWC4cOHs2DBgs1XNDOzjST9obt17hoyMys4JwIzs4JzIjAzKzgnAjOzgnMiMDMruF531ZCZWdHMWtjBlLlLWbmmk8FtrUwaO4oJo9t7bP9OBGZmDWzWwg4mz1xE57vrAehY08nkmYsAeiwZOBEUXN6/NMxs20yZu3RjEujS+e56psxd6kRg264WvzTMbNusXNO5ReVbw4mgwLr7pfH1Wx7nxnnP1ykqM8vq29KHtes3vKd8cFtrjx3DVw0VWHe/KMr9ozOz+hjav5U+2rSstW8Lk8b23MPl3CIosMFtrXSUSQbtba3cdNohdYjIzMrxVUNNohEHZSeNHbXJGAH0/C8NM9t2E0a35/p94URQA406KNt17K/f8jhr12+gvUESlJnVlhNBDTT6oOwOffswelibu4PMCsqDxTXQ6IOy+w7alfEHuhVgVlRuEdSAB2XNrJG5RVADk8aOorVvyyZlHpQ1s0bhFkENeFDWzBqZE0GNTBjdvnFg2N1BZtZIcu0akjRO0lJJyySdW2b9MEl3S1oo6XFJR+cZj5mZvVduiUBSCzAVOArYFzhJ0r4l1c4DZkTEaOBE4Cd5xWNmZuXl2SI4GFgWEc9ExFpgOjC+pE4Au6bvdwNW5hiPmZmVkWciaAeWZ5ZXpGVZFwB/J2kFMAc4s9yOJE2UtEDSglWrVuURq5lZYdX78tGTgGsiYghwNPAzSe+JKSKmRcSYiBgzcODAmgdpZtbM8kwEHcDQzPKQtCzrfwIzACLiAaAfMCDHmMzMrESeiWA+MFLSCEnbkwwGzy6p8zzwVwCSPkSSCNz3Y2ZWQ7ndRxAR6ySdAcwFWoCrI2KxpAuBBRExGzgHuFLSWSQDx6dEROQV07ZoxGmkzcx6Qq43lEXEHJJB4GzZ+Zn3S4BP5hlDT2jUaaTNzHqC7yyuQk9NI73khTfYd9Cum69oZlZD9b5qqFfoqWmkPd2zmTUitwiq4GmkzayZuUVAMgbwyUvuYsS5v+CTl9zFrIWbXuXqaaTNrJkVvkVQzUCwp5E2s2ZW+ESwJQPBfravmTWjwncNbclAsAd7zawZFb5F4IFgMyu6wrcIPBBsZkVX+BaBB4LNrOgKnwjAzxM2s2IrfNeQmVnRORGYmRWcE4GZWcE5EZiZFZwTgZlZwTkRmJkVnBOBmVnBORGYmRWcE4GZWcE5EZiZFZwTgZlZwTkRmJkVnBOBmVnBORGYmRVcrtNQSxoHXAa0AFdFxCUl638EHJ4u7gjsERFtecbUZdbCDqbMXcrKNZ0MbmulX98+DNh5h1oc2sysoeSWCCS1AFOBI4EVwHxJsyNiSVediDgrU/9MYHRe8WTNWtjB5JmLNj60vmNNJ31UiyObmTWePLuGDgaWRcQzEbEWmA6Mr1D/JODGHOPZaMrcpRuTQJcNActXl3+QvZlZM8szEbQDyzPLK9Ky95C0FzACuKub9RMlLZC0YNWqVdsc2MoyD6sHWLt+wzbv28yst2mUweITgVsiYn25lRExLSLGRMSYgQMHbvPBBre1li1v76bczKyZ5ZkIOoChmeUhaVk5J1KjbiGASWNH0dq3ZZOy1r4tTBo7qlYhmJk1jDwTwXxgpKQRkrYn+bKfXVpJ0geB3YEHcoxlExNGt/Pdzx/A9i3Jx29va+W7nz+ACaPL9lyZmTW13K4aioh1ks4A5pJcPnp1RCyWdCGwICK6ksKJwPSIiLxiKWfC6HZunPc8ADeddkgtD21m1lByvY8gIuYAc0rKzi9ZviDPGMzMrLJGGSw2M7M6cSIwMys4JwIzs4JzIjAzKzgnAjOzgnMiMDMrOCcCM7OCcyIwMys4JwIzs4JzIjAzKzgnAjOzgnMiMDMrOCcCM7OCcyIwMys4JwIzs4KrmAgk7SrpA2XKP5xfSGZmVkvdJgJJJwC/B34uabGkj2VWX5N3YGZmVhuVWgTfBA6KiAOBU4GfSTo2XafcIzMzs5qo9KjKloh4ASAi5kk6HLhD0lCgps8XNjOz/FRqEbyZHR9Ik8JhwHhgv5zjMjOzGqnUIvgHSrqAIuJNSeOAE3KNyszMaqbbFkFEPAY8K+nukvJ3I+L63CMzM7OaqHj5aESsBzZI2q1G8ZiZWY1V6hrq8hawSNKdwNtdhRHxT7lFZWZmNVNNIpiZvszMrAltNhFExLVbu/N0YPkyoAW4KiIuKVPnBOACkktSH4uIk7f2eGZmtuWqaRFsFUktwFTgSGAFMF/S7IhYkqkzEpgMfDIiXpO0R17xmJlZeXlOOncwsCwinomItcB0knsQsr4CTI2I1wAi4uUc4zEzszLyTATtwPLM8oq0LGsfYB9J90l6MO1Keg9JEyUtkLRg1apVOYVrZlZMm+0akrQPMAnYK1s/Io7ooeOPJLljeQjwG0kHRMSabKWImAZMAxgzZoyntzAz60HVjBHcDFwBXAms34J9dwBDM8tD0rKsFcBDEfEuyc1rT5EkhvlbcBwzM9sG1SSCdRFx+Vbsez4wUtIIkgRwIlB6RdAs4CTgp5IGkHQVPbMVxzIzs61UzRjB7ZL+UdIgSf27XpvbKCLWAWcAc4EngRkRsVjShZKOSavNBV6VtAS4G5gUEa9u5WcxM7OtUE2L4Ivp30mZsgDev7kNI2IOMKek7PzM+wDOTl9mZlYH1dxQNqIWgZiZWX1Uc9VQX5IpqT+VFt0D/Gs6wGtmZr1cNV1DlwN9gZ+ky3+fln05r6DMzKx2qkkEH4uIj2SW75L0WF4BmZlZbVVz1dD67CMrJb2fLbufwMzMGlg1LYJJwN2SniF5dOVewKm5RmVmZjVTzVVDv05nCR2VFi2NiHfyDcvMzGql20Qg6YiIuEvS50tW7S2JiPDDaszMmkClFsGngbuAz5VZF/ipZWZmTaHbRBAR307fXhgRz2bXpfMHmZlZE6jmqqGflym7pacDMTOz+qg0RvBBYD9gt5Jxgl2BfnkHZmZmtVFpjGAU8FmgjU3HCd4kecSkmZk1gUpjBLcBt0k6JCIeqGFMZmZWQ9XcULZQ0ldJuok2dglFxJdyi8rMzGqmmsHinwF/AYwF7iV55OSbeQZlZma1U00i2DsivgW8HRHXAn8DfDzfsMzMrFaq6Rrqeu7AGkn7Ay8Ce+QXUn5mLexgytylrFzTyeC2Vvr17cOAnXeod1hmZnVVTSKYJml34FvAbGBn4PzKmzSeWQs7mDxzEZ3vJhOndqzppI/qHJSZWQOoZtK5q9K391LFc4ob1ZS5SzcmgS4bApav7qxTRGZmjaHSDWUVHygfEZf2fDj5Wbmm/Bf+2vUbahyJmVljqdQi2CX9Owr4GEm3ECQ3l83LM6g8DG5rpaNMMmhva61DNGZmjaPbq4Yi4jsR8R2Sy0U/GhHnRMQ5wEHAsFoF2FMmjR1Fa9+WTcpa+7YwaeyobrYwMyuGagaL9wTWZpbXpmW9yoTR7QB8/ZbHWbt+A+1trUwaO2pjuZlZUVWTCK4D5km6NV2eAFyTW0Q5mjC6nRvnPQ/ATacdUudozMwaw2ZvKIuIi0meUfxa+jo1Ir5bzc4ljZO0VNIySeeWWX+KpFWSHk1fX97SD2BmZtum0lVDu0bEG5L6A8+lr651/SNidaUdS2oBpgJHAiuA+ZJmR8SSkqo3RcQZWxm/mZlto0pdQzeQTEP9MMmjKbsoXd7cPQUHA8si4hkASdOB8UBpIjAzszqqNA31Z9O/W/tYynZgeWZ5BeXnKDpO0qeAp4CzImJ5aQVJE4GJAMOG9boLlszMGlqlrqGPVtowIh7pgePfDtwYEe9IOg24FjiizLGmAdMAxowZE6Xrzcxs61XqGvphhXVBmS/sEh3A0MzykLTszzuJeDWzeBXw/c3s08zMelilrqHDt3Hf84GRkkaQJIATgZOzFSQNiogX0sVjgCe38ZhmZraFqrmPgHT66X3Z9All11XaJiLWSToDmAu0AFdHxGJJFwILImI28E+SjgHWAauBU7bqU5iZ2VbbbCKQ9G3gMJJEMAc4CvgdyY1mFUXEnHSbbNn5mfeTgclbFLGZmfWoap5QdjzwV8CLEXEq8BFgt1yjMjOzmqkmEXRGxAZgnaRdgZfZdBDYzMx6sWrGCBZIagOuJLm57C3ggVyjMjOzmql0H8FU4IaI+Me06ApJvwJ2jYjHaxKdmZnlrlKL4CngB5IGATNIbvxaWJuwzMysVio9mOayiDgE+DTwKnC1pN9L+rakfWoWoZmZ5aqaaaj/EBHfi4jRwEkkzyPwjV9mZk1is4lA0naSPifpeuCXwFLg87lHZmZmNVFpsPhIkhbA0SQPq58OTIyIt2sUm5mZ1UClweLJJM8kOCciXqtRPGZmVmOVJp3b3OyiZmbWBKq5s9jMzJqYE4GZWcE5EZiZFZwTgZlZwTkRmJkVnBOBmVnBORGYmRWcE4GZWcE5EZiZFZwTgZlZwTkRmJkVnBOBmVnBORGYmRWcE4GZWcHlmggkjZO0VNIySedWqHecpJA0Js94zMzsvXJLBJJagKnAUcC+wEmS9i1Tbxfga8BDecViZmbdy7NFcDCwLCKeiYi1JI+6HF+m3kXA94A/5RiLmZl1I89E0A4szyyvSMs2kvRRYGhE/KLSjiRNlLRA0oJVq1b1fKRmZgVWt8FiSX2AS4FzNlc3IqZFxJiIGDNw4MD8gzMzK5A8E0EHMDSzPCQt67ILsD9wj6TngP8GzPaAsZlZbeWZCOYDIyWNkLQ9cCIwu2tlRLweEQMiYnhEDAceBI6JiAU5xmRmZiVySwQRsQ44A5gLPAnMiIjFki6UdExexzUzsy2zXZ47j4g5wJySsvO7qXtYnrGYmVl5vrPYzKzgnAjMzArOicDMrOCcCMzMCs6JwMys4JwIzMwKzonAzKzgnAjMzArOicDMrOCcCMzMCs6JwMys4JwIzMwKzonAzKzgnAjMzArOicDMrOCcCMzMCs6JwMys4JwIzMwKzonAzKzgnAjMzArOicDMrOCcCMzMCs6JwMys4JwIzMwKzonAzKzgck0EksZJWippmaRzy6w/XdIiSY9K+p2kffOMx8zM3iu3RCCpBZgKHAXsC5xU5ov+hog4ICIOBL4PXJpXPGZmVl6eLYKDgWUR8UxErAWmA+OzFSLijcziTkDkGI+ZmZWxXY77bgeWZ5ZXAB8vrSTpq8DZwPbAEeV2JGkiMBFg2LBhPR6omVmR1X2wOCKmRsQHgG8A53VTZ1pEjImIMQMHDqxtgGZmTS7PRNABDM0sD0nLujMdmJBjPGZmVkaeiWA+MFLSCEnbAycCs7MVJI3MLP4N8J85xmNmZmXkNkYQEesknQHMBVqAqyNisaQLgQURMRs4Q9JngHeB14Av5hWPmZmVl+dgMRExB5hTUnZ+5v3X8jy+mZltXt0Hi83MrL6cCMzMCs6JwMys4JwIzMwKLtfB4kYxa2EHU+YuZeWaTvq29GFo/9Z6h2Rm1jCavkUwa2EHk2cuomNNJwGsXb+BZ195m1kLK93bZmZWHE2fCKbMXUrnu+s3KdsQSbmZmRUgEaxc07lF5WZmRdP0iWBwW/nxgO7KzcyKpukTwaSxo2jt27JJWWvfFiaNHVWniMzMGkvTXzU0YXQ7wMarhga3tTJp7KiN5WZmRdf0iQCSZOAvfjOz8pq+a8jMzCpzIjAzKzgnAjOzgnMiMDMrOCcCM7OCU0TUO4YtImkV8Icqqw8AXskxnJ7Wm+LtTbFC74q3N8UKvSveIse6V0QMLLei1yWCLSFpQUSMqXcc1epN8famWKF3xdubYoXeFa9jLc9dQ2ZmBedEYGZWcM2eCKbVO4At1Jvi7U2xQu+KtzfFCr0rXsdaRlOPEZiZ2eY1e4vAzMw2w4nAzKzgmjYRSBonaamkZZLOrXc8lUh6TtIiSY9KWlDveEpJulrSy5KeyJT1l3SnpP9M/+5ezxi7dBPrBZI60vP7qKSj6xljlqShku6WtETSYklfS8sb7vxWiLXhzq+kfpLmSXosjfU7afkISQ+l3ws3Sdq+3rFCxXivkfRs5twemMvxm3GMQFIL8BRwJLACmA+cFBFL6hpYNyQ9B4yJiIa80UXSp4C3gOsiYv+07PvA6oi4JE20u0fEN+oZZxpXuVgvAN6KiB/UM7ZyJA0CBkXEI5J2AR4GJgCn0GDnt0KsJ9Bg51eSgJ0i4i1JfYHfAV8DzgZmRsR0SVcAj0XE5fWMFSrGezpwR0Tckufxm7VFcDCwLCKeiYi1wHRgfJ1j6rUi4jfA6pLi8cC16ftrSb4Q6q6bWBtWRLwQEY+k798EngTaacDzWyHWhhOJt9LFvukrgCOAri/VhjivUDHemmjWRNAOLM8sr6BB/8GmAvh3SQ9LmljvYKq0Z0S8kL5/EdiznsFU4QxJj6ddR3XvZilH0nBgNPAQDX5+S2KFBjy/klokPQq8DNwJPA2siYh1aZWG+l4ojTcius7txem5/ZGkHfI4drMmgt7m0Ij4KHAU8NW0e6PXiKR/sZH7GC8HPgAcCLwA/LC+4byXpJ2BnwP/HBFvZNc12vktE2tDnt+IWB8RBwJDSHoJPljnkCoqjVfS/sBkkrg/BvQHcukebNZE0AEMzSwPScsaUkR0pH9fBm4l+Ufb6F5K+4y7+o5frnM83YqIl9L/yTYAV9Jg5zftE/45cH1EzEyLG/L8lou10c9vRKwB7gYOAdokdT2ityG/FzLxjku74yIi3gF+Sk7ntlkTwXxgZHqFwPbAicDsOsdUlqSd0oE3JO0E/DXwROWtGsJs4Ivp+y8Ct9Uxloq6vlBTx9JA5zcdJPw34MmIuDSzquHOb3exNuL5lTRQUlv6vpXkwpEnSb5gj0+rNcR5hW7j/X3mx4BIxjNyObdNedUQQHoJ2/8FWoCrI+LiOodUlqT3k7QCALYDbmi0WCXdCBxGMi3uS8C3gVnADGAYybTgJ0RE3Qdpu4n1MJJuiwCeA07L9L/XlaRDgd8Ci4ANafE3SfreG+r8Voj1JBrs/Er6MMlgcAvJD94ZEXFh+v/bdJJuloXA36W/tuuqQrx3AQMBAY8Cp2cGlXvu+M2aCMzMrDrN2jVkZmZVciIwMys4JwIzs4JzIjAzKzgnAjOzgnMisIaS3kb/z5nluZKuyiz/UNLZFba/RtLx6ft7JL3n4d+S+kq6JJ3Z8xFJD0g6Kl33nKQBWxH3xuN2s35qOnvkEkmdmdkkj5c0p+sa8p4kaZCkOyqs317SbzI3WFlBORFYo7kP+ASApD4k9wPsl1n/CeD+bTzGRcAgYP90ao8JwC7buM+KIuKr6fQBRwNPR8SB6euWiDg6vZu0p51NcqdvdzGtBX4N/G0Ox7ZexInAGs39JFMBQJIAngDelLR7OuHWh4BHJJ0vab6kJyRNS++83CxJOwJfAc7supEonSJhRpm6Z6f7f6KklfI/0knAHpP0szLbXZS2EFqqjOk5SQMkDZf0+3TbpyRdL+kzku5LWy8Hp/V3Sid3mydpoaTuZtY9DvhVus1+af1H09hHpnVmAf+9mjiteblJaA0lIlZKWidpGMmv/wdIZog8BHgdWBQRayX9v4i4ECD9Mv4scHsVh9gbeL50YrdSkg4CTgU+TnJX50OS7gXWAucBn4iIVyT1L9luCknr4tTYurs19wa+AHyJZKqUk4FDgWNI7uKdAPwLcFdEfCntUpon6T8i4u1MHCOA1zJ3zZ4OXBYR16fTrnQlqSdIJjSzAnOLwBrR/SRJoCsRPJBZvi+tc7iSJ00tIpljfr9yO9oGhwK3RsTb6S39M4G/TI91c9dDhEqmffgWsFtEnL6VSQDg2YhYlE7gthj4dbqvRcDwtM5fA+cqmbL4HqAfyVQUWYOAVZnlB4BvSvoGsFdEdKbxrwfWds13ZcXkRGCNqGuc4ACSX6wPkrQIPgHcL6kf8BPg+Ig4gKQfvF+V+14GDJO0a49HnfyCP6i0lbCFsvPebMgsb+DPLXgBx2XGGYZFxJMl++kkc04i4gaSVkUnMEfSEZm6OwB/2oaYrZdzIrBGdD9JV8/qdHrj1UAbSTK4nz9/wb2iZG78bq/WKRURfySZQfOytIuka+bHL5RU/S0wQdKOSmaFPTYtuwv4gqT3pdtmv/R/BVwC/CLnX9hzgTO7xkUkjS5T5yn+3ILomtzwmYj4McmMmx9Oy98HvBIR7+YYrzU4JwJrRItIrhZ6sKTs9Yh4Jb3C5kqS1sJckl/iW+I8km6TJUoecn8HUPowmEeAa4B5JDOBXhURCyNiMXAxcK+kx4BLS7a7OY1ttpLphPNwEcmjDB+XtDhd3kQ6XvC0pL3TohOAJ9LupP2B69Lyw4Ff5BSn9RKefdSsSUk6FjgoIs6rUGcmcG5EPFW7yKzR+KohsyYVEbd2dWGVk3aNzXISMLcIzMwKzmMEZmYF50RgZlZwTgRmZgXnRGBmVnBOBGZmBfdf82rdfzULAWwAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAb5ElEQVR4nO3de5wddZ3m8c9DEyDKJWJaB0JC4hCjwQvRCOIVGDXghURFBpidVRyNzojjiBMFR5HBZQeHGVx8bdQFlgFd7ggxajQygqiAkGCAEDBMRIQ0KEEIIEZCkmf/qGo4NKdPOqHrnO5Tz/v16lef+tXvVH0r6e7nVP3qIttERER9bdPpAiIiorMSBBERNZcgiIiouQRBRETNJQgiImouQRARUXMJgogWJL1R0spO1xFRpQRBjFiS7pL0lk7WYPuntqdVtXxJsyT9RNKjktZIulrSoVWtL6KZBEHUmqSeDq77MOAS4BvAHsALgROAd23FsiQpv8+xVfKDE6OOpG0kHSfpV5J+L+liSbs2zL9E0m8lPVx+2t67Yd45kr4maZGkx4ADyz2Pf5R0S/meiyTtUPY/QNLqhvcP2rec/2lJ90m6V9KHJFnSXk22QcBpwBdtn2X7YdubbF9t+8NlnxMl/b+G90wul7dtOf1jSSdLugb4IzBP0tIB6/mkpIXl6+0l/ZukuyX9TtLXJY19lv8d0QUSBDEafRyYA7wZ2B14CJjfMP/7wFTgBcAvgPMGvP8o4GRgJ+BnZdvhwMHAFOAVwAdarL9pX0kHA8cCbwH2Ag5osYxpwETg0hZ9huKvgbkU2/J1YJqkqQ3zjwLOL1+fArwY2KesbwLFHkjUXIIgRqOPAv9ke7Xtx4ETgcP6PynbPtv2ow3zXilpl4b3f9v2NeUn8D+VbV+xfa/tB4HvUPyxHMxgfQ8H/sP2Ctt/LNc9mOeX3+8b2iYP6pxyfRtsPwx8GzgSoAyElwALyz2QucAnbT9o+1HgfwJHPMv1RxdIEMRotCdwuaS1ktYCtwMbgRdK6pF0SnnY6BHgrvI94xvef0+TZf624fUfgR1brH+wvrsPWHaz9fT7ffl9txZ9hmLgOs6nDAKKvYEFZSj1As8Bbmz4d/tB2R41lyCI0ege4BDb4xq+drDdR/HHbzbF4ZldgMnle9Tw/qpuuXsfxaBvv4kt+q6k2I73tujzGMUf735/1qTPwG25AuiVtA9FIPQfFnoAWAfs3fBvtovtVoEXNZEgiJFujKQdGr62pTgWfrKkPQEk9UqaXfbfCXic4hP3cygOf7TLxcDRkl4q6TnA5wfr6OL+78cCn5d0tKSdy0HwN0g6o+x2E/AmSZPKQ1vHb64A209QnIl0KrArRTBgexNwJvBlSS8AkDRB0qyt3djoHgmCGOkWUXyS7f86ETgdWAj8UNKjwM+B/cr+3wB+A/QBt5Xz2sL294GvAFcBqxrW/fgg/S8F/hL4IHAv8Dvgf1Ac58f2FcBFwC3AjcB3h1jK+RR7RJfY3tDQ/pn+usrDZv9JMWgdNac8mCaiGpJeCtwKbD/gD3LEiJI9gohhJOnd5fn6zwO+BHwnIRAjXYIgYnh9BLgf+BXFmUx/29lyIjYvh4YiImouewQRETW3bacL2FLjx4/35MmTO11GRMSocuONNz5gu+kFhKMuCCZPnszSpUs33zEiIp4k6TeDzcuhoYiImksQRETUXIIgIqLmEgQRETWXIIiIqLlRd9ZQRETdLFjWx6mLV3Lv2nXsPm4s82ZNY86MCcO2/ARBRMQItmBZH8dftpx1T2wEoG/tOo6/bDnAsIVBDg1FRIxgpy5e+WQI9Fv3xEZOXbxy2NaRIIiIGMHuXbtui9q3RoIgImIE233c2C1q3xoZI+igqgeAIrpNHX9n5s2a9rQxAoCxY3qYN2v4Hi6XIOiQdgwARXSTuv7O9G/bpy+9hfUbNzGhggAcdc8jmDlzprvhpnOvP+VK+poc49uuZxtmTBrX/oIiRrhld69l/cZNz2ivy+/Mbfc9wvTdduaij+y/Ve+XdKPtmc3mZYygQwYb6Gn2gx4Rg/9u1OV3ZvpuOzN7n2r2fGp7aKjTxxp3Hze26R7BhHFjtzrxI7rZYHvR+Z159mq5R9B/rLFv7TrMU8caFyzra1sN82ZNY+yYnqe1DfcAUEQ3ye9MdWq5RzDYBRqfvvQWLrjh7rbVsfu4HbhzzWMYKhkAiugm/b8bdTtrqB1qGQQj5fj8+B23Z/yO2zN7nwkctd+ktq47YjSaM2NC/vBXoNIgkHQwcDrQA5xl+5QB8ycB5wLjyj7H2V5UZU2Q4/MREY0qGyOQ1APMBw4BpgNHSpo+oNvngIttzwCOAL5aVT2NcqwxIuIpVQ4W7wussn2n7fXAhcDsAX0M7Fy+3gW4t8J6njRnxgT+5T0vZ7ueYvMnjBvLv7zn5dnljIhaqvLQ0ATgnobp1cB+A/qcCPxQ0seB5wJvqbCep5kzY8KTA8M5HBQRddbp00ePBM6xvQfwduCbkp5Rk6S5kpZKWrpmzZq2FxkR0c2qDII+YGLD9B5lW6O/AS4GsH0dsAMwfuCCbJ9he6btmb29vRWVGxFRT1UGwRJgqqQpkrajGAxeOKDP3cBfAEh6KUUQ5CN/REQbVRYEtjcAxwCLgdspzg5aIekkSYeW3T4FfFjSzcAFwAc82u6CFxExylV6HUF5TcCiAW0nNLy+DXh9lTVERERrnR4sjoiIDksQRETUXIIgIqLmEgQRETWXIIiIqLkEQUREzSUIIiJqLkEQEVFzCYKIiJpLEERE1FyCICKi5hIEERE1lyCIiKi5BEFERM0lCCIiai5BEBFRcwmCiIiaSxBERNRcgiAiouYSBBERNZcgiIiouQRBRETNJQgiImouQRARUXMJgoiImksQRETUXKVBIOlgSSslrZJ0XJP5X5Z0U/l1h6S1VdYTERHPtG1VC5bUA8wH3gqsBpZIWmj7tv4+tj/Z0P/jwIyq6omIiOaq3CPYF1hl+07b64ELgdkt+h8JXFBhPRER0USVQTABuKdhenXZ9gyS9gSmAFcOMn+upKWSlq5Zs2bYC42IqLORMlh8BHCp7Y3NZto+w/ZM2zN7e3vbXFpERHerMgj6gIkN03uUbc0cQQ4LRUR0RJVBsASYKmmKpO0o/tgvHNhJ0kuA5wHXVVhLREQMorIgsL0BOAZYDNwOXGx7haSTJB3a0PUI4ELbrqqWiIgYXGWnjwLYXgQsGtB2woDpE6usodGCZX2cungl965dx+7jxrLDmG0Yv+P27Vp9RMSIVGkQjCQLlvVx/GXLWfdEMR7dt3Yd26jDRUVEjAAj5ayhyp26eOWTIdBvk+GeB9d1qKKIiJGhNkFw79rmf/DXb9zU5koiIkaW2gTB7uPGNm2fMEh7RERd1CYI5s2axtgxPU9rGzumh3mzpnWoooiIkaE2g8VzZhR3t/j0pbewfuMmJowby7xZ055sj4ioq9oEARRhcMENdwNw0Uf273A1EREjQ20ODUVERHMJgoiImksQRETUXIIgIqLmEgQRETWXIIiIqLkEQUREzSUIIiJqLkEQEVFzLYNA0s6S/rxJ+yuqKykiItpp0CCQdDjwS+BbklZIek3D7HOqLiwiItqj1R7BZ4FX294HOBr4pqR3l/PybK+IiC7R6qZzPbbvA7B9g6QDge9KmgjkQfMREV2i1R7Bo43jA2UoHADMBvauuK6IiGiTVnsEf8uAQ0C2H5V0MHB4pVVFRETbDLpHYPtm4NeSrhrQ/oTt8yqvLCIi2qLl6aO2NwKbJO3SpnoiIqLNhvKEsj8AyyVdATzW32j77yurKiIi2mYoQXBZ+bXFyvGE04Ee4CzbpzTpczhwIsWZSDfbPmpr1hUREVtns0Fg+9ytWbCkHmA+8FZgNbBE0kLbtzX0mQocD7ze9kOSXrA164qIiK1X5b2G9gVW2b7T9nrgQopTTxt9GJhv+yEA2/dXWE9ERDRRZRBMAO5pmF5dtjV6MfBiSddI+nl5KOkZJM2VtFTS0jVr1lRUbkREPXX67qPbAlMpLlQ7EjhT0riBnWyfYXum7Zm9vb3trTAiosttdoxA0ouBecCejf1tH7SZt/YBExum9yjbGq0Grrf9BMU1C3dQBMOSzZceERHDYShnDV0CfB04E9i4BcteAkyVNIUiAI4ABp4RtIBiT+A/JI2nOFR05xasIyIinqWhBMEG21/b0gXb3iDpGGAxxemjZ9teIekkYKntheW8t0m6jSJk5tn+/ZauKyIitt5QguA7kv4OuBx4vL/R9oObe6PtRcCiAW0nNLw2cGz5FRERHTCUIHh/+X1eQ5uBFw1/ORER0W5DuaBsSjsKiYiIzhjKWUNjKG5J/aay6cfA/ynP9ImIiFFuKIeGvgaMAb5aTv912fahqoqKiIj2GUoQvMb2Kxumr5R0c1UFRUREew3lyuKNjY+slPQitux6goiIGMGGskcwD7hK0p0Uj67cEzi60qoiIqJthnLW0I/K20VPK5tW2n681XsiImL0GDQIJB1k+0pJ7xkway9J2N6qh9VERMTI0mqP4M3AlcC7mswzW/nUsoiIGFkGDQLbXyhfnmT7143zyhvJRUREFxjKWUPfatJ26XAXEhERndFqjOAlwN7ALgPGCXYGdqi6sIiIaI9WYwTTgHcC43j6OMGjFM8ajoiILtBqjODbwLcl7W/7ujbWFBERbTSUC8qWSfoYxWGiJw8J2f5gZVVFRETbDGWw+JvAnwGzgKspnj38aJVFRURE+wwlCPay/XngMdvnAu8A9qu2rIiIaJehBEH/cwfWSnoZsAvwgupKioiIdhrKGMEZkp4HfB5YCOwInND6LRERMVoM5aZzZ5UvrybPKY6I6DqtLig7ttUbbZ82/OVERES7tdoj2Kn8Pg14DcVhISguLruhyqIiIqJ9Wl1Q9s8Akn4CvMr2o+X0icD32lJdRERUbihnDb0QWN8wvb5si4iILjCUIPgGcIOkE8u9geuBc4aycEkHS1opaZWk45rM/4CkNZJuKr8+tCXFR0TEszeUs4ZOlvR94I1l09G2l23ufZJ6gPnAW4HVwBJJC23fNqDrRbaP2cK6IyJimLQ6a2hn249I2hW4q/zqn7er7Qc3s+x9gVW27yzfcyEwGxgYBBER0UGt9gjOp7gN9Y0Uj6bsp3J6c9cUTADuaZheTfNbU7xX0puAO4BP2r5nYAdJc4G5AJMmTdrMaiMiYksMOkZg+53l9ym2X9TwNcX2cF1Y9h1gsu1XAFcA5w5Syxm2Z9qe2dvbO0yrjogIaH1o6FWt3mj7F5tZdh8wsWF6j7KtcRm/b5g8C/jXzSwzIiKGWatDQ//eYp6Bgzaz7CXA1PJB933AEcBRjR0k7Wb7vnLyUOD2zSwzIiKGWasLyg58Ngu2vUHSMcBioAc42/YKSScBS20vBP5e0qHABuBB4APPZp0REbHlhnL3UcrbT0/n6U8o+8bm3md7EbBoQNsJDa+PB44farERETH8NhsEkr4AHEARBIuAQ4CfUVxoFhERo9xQriw+DPgL4Le2jwZeSfFwmoiI6AJDCYJ1tjcBGyTtDNzP088GioiIUWwoYwRLJY0DzqS4uOwPwHVVFhUREe3T6jqC+cD5tv+ubPq6pB8AO9u+pS3VRURE5VrtEdwB/Juk3YCLgQuGcrO5iIgYXVrdYuJ02/sDbwZ+D5wt6ZeSviDpxW2rMCIiKrXZwWLbv7H9JdszgCOBOeQK4IiIrrHZIJC0raR3SToP+D6wEnhP5ZVFRERbtBosfivFHsDbKR5WfyEw1/ZjbaotIiLaoNVg8fEUzyT4lO2H2lRPRES0Waubzm3u7qIREdEFhnJlcUREdLEEQUREzSUIIiJqLkEQEVFzCYKIiJpLEERE1FyCICKi5hIEERE1lyCIiKi5BEFERM0lCCIiai5BEBFRcwmCiIiaqzQIJB0saaWkVZKOa9HvvZIsaWaV9URExDNVFgSSeoD5wCHAdOBISdOb9NsJ+ARwfVW1RETE4KrcI9gXWGX7TtvrKZ5wNrtJvy8CXwL+VGEtERExiCqDYAJwT8P06rLtSZJeBUy0/b0K64iIiBY6NlgsaRvgNOBTQ+g7V9JSSUvXrFlTfXERETVSZRD0ARMbpvco2/rtBLwM+LGku4DXAgubDRjbPsP2TNsze3t7Kyw5IqJ+qgyCJcBUSVMkbQccASzsn2n7YdvjbU+2PRn4OXCo7aUV1hQREQNUFgS2NwDHAIuB24GLba+QdJKkQ6tab0REbJltq1y47UXAogFtJwzS94Aqa4mIiOZyZXFERM0lCCIiai5BEBFRcwmCiIiaSxBERNRcgiAiouYSBBERNZcgiIiouQRBRETNJQgiImouQRARUXMJgoiImksQRETUXIIgIqLmEgQRETWXIIiIqLkEQUREzSUIIiJqLkEQEVFzCYKIiJpLEERE1FyCICKi5hIEERE1lyCIiKi5BEFERM0lCCIiaq7SIJB0sKSVklZJOq7J/I9KWi7pJkk/kzS9ynoiIuKZKgsCST3AfOAQYDpwZJM/9OfbfrntfYB/BU6rqp6IiGiuyj2CfYFVtu+0vR64EJjd2MH2Iw2TzwVcYT0REdHEthUuewJwT8P0amC/gZ0kfQw4FtgOOKjZgiTNBeYCTJo0adgLjYios44PFtueb/vPgc8Anxukzxm2Z9qe2dvb294CIyK6XJVB0AdMbJjeo2wbzIXAnArriYiIJqoMgiXAVElTJG0HHAEsbOwgaWrD5DuA/6qwnoiIaKKyMQLbGyQdAywGeoCzba+QdBKw1PZC4BhJbwGeAB4C3l9VPRER0VyVg8XYXgQsGtB2QsPrT1S5/oiI2LyODxZHRERnJQgiImouQRARUXMJgoiImqt0sHikWLCsj1MXr+TetesY07MNE3cd2+mSIiJGjK7fI1iwrI/jL1tO39p1GFi/cRO/fuAxFixrdW1bRER9dH0QnLp4Jeue2Pi0tk0u2iMiogZBcO/adVvUHhFRN10fBLuPaz4eMFh7RETddH0QzJs1jbFjep7WNnZMD/NmTetQRRERI0vXnzU0Z8YEgCfPGtp93FjmzZr2ZHtERN11fRBAEQb5wx8R0VzXHxqKiIjWEgQRETWXIIiIqLkEQUREzSUIIiJqTrY7XcMWkbQG+M0Wvm088EAF5YxUddreOm0rZHu7WdXbuqft3mYzRl0QbA1JS23P7HQd7VKn7a3TtkK2t5t1cltzaCgiouYSBBERNVeXIDij0wW0WZ22t07bCtnebtaxba3FGEFERAyuLnsEERExiARBRETNdX0QSDpY0kpJqyQd1+l6hpuksyXdL+nWhrZdJV0h6b/K78/rZI3DRdJESVdJuk3SCkmfKNu7dXt3kHSDpJvL7f3nsn2KpOvLn+mLJG3X6VqHi6QeScskfbec7uZtvUvSckk3SVpatnXkZ7mrg0BSDzAfOASYDhwpaXpnqxp25wAHD2g7DviR7anAj8rpbrAB+JTt6cBrgY+V/5/dur2PAwfZfiWwD3CwpNcCXwK+bHsv4CHgbzpX4rD7BHB7w3Q3byvAgbb3abh+oCM/y10dBMC+wCrbd9peD1wIzO5wTcPK9k+ABwc0zwbOLV+fC8xpZ01VsX2f7V+Urx+l+IMxge7dXtv+Qzk5pvwycBBwadneNdsraQ/gHcBZ5bTo0m1toSM/y90eBBOAexqmV5dt3e6Ftu8rX/8WeGEni6mCpMnADOB6unh7y0MlNwH3A1cAvwLW2t5Qdummn+n/BXwa2FROP5/u3VYoQv2Hkm6UNLds68jPci2eUFZnti2pq84RlrQj8C3gH2w/UnxwLHTb9treCOwjaRxwOfCSzlZUDUnvBO63faOkAzpcTru8wXafpBcAV0j6ZePMdv4sd/seQR8wsWF6j7Kt2/1O0m4A5ff7O1zPsJE0hiIEzrN9Wdnctdvbz/Za4Cpgf2CcpP4Pcd3yM/164FBJd1Ecwj0IOJ3u3FYAbPeV3++nCPl96dDPcrcHwRJgannmwXbAEcDCDtfUDguB95ev3w98u4O1DJvymPH/BW63fVrDrG7d3t5yTwBJY4G3UoyLXAUcVnbriu21fbztPWxPpvg9vdL2X9GF2wog6bmSdup/DbwNuJUO/Sx3/ZXFkt5OceyxBzjb9smdrWh4SboAOIDiFra/A74ALAAuBiZR3LL7cNsDB5RHHUlvAH4KLOep48ifpRgn6MbtfQXFgGEPxYe2i22fJOlFFJ+adwWWAf/N9uOdq3R4lYeG/tH2O7t1W8vturyc3BY43/bJkp5PB36Wuz4IIiKitW4/NBQREZuRIIiIqLkEQUREzSUIIiJqLkEQEVFzCYIYUSR9WdI/NEwvlnRWw/S/Szq2xfvPkXRY+frHkp7xMHBJYySdUt7h8ReSrpN0SDnvLknjt6LuJ9c7yPz55V0mb5O0rnx9k6TDJC3qv15gOEnarf8unoPM307STxou2IqaShDESHMN8DoASdtQXB+xd8P81wHXPst1fBHYDXiZ7VdR3Nhrp2e5zJZsf8z2PsDbgV+Vd5zcx/altt9eXjk83I4FzmxR03qKO1z+ZQXrjlEkQRAjzbUUt1GAIgBuBR6V9DxJ2wMvBX4h6QRJSyTdKukMNd5wqAVJzwE+DHy8/8Ik27+zfXGTvseWy791wF7Kf5d0i4rnBHyzyfu+WO4h9AyxprskjZc0WdIvy/feIek8SW+RdE2597Jv2f+5Kp5DcYOKe/cPdkfd9wI/KN+zd9n/prL2qWWfBcBfDaXO6F7ZJYwRxfa9kjZImkTx6f86ijtO7g88DCy3vV7S/7Z9EkD5x/idwHeGsIq9gLttP9Kqk6RXA0cD+wECrpd0NbAe+BzwOtsPSNp1wPtOpdi7ONpbd7XmXsD7gA9S3CLlKOANwKEUV1HPAf6J4hYMHywPKd0g6T9tP9ZQxxTgoYarcD8KnG77vPJ2K/0hdSvwmq2oM7pI9ghiJLqWIgT6g+C6hulryj4Hqnhy1XKKG5Tt3WxBz8IbgMttP1Y+E+Ay4I3lui6x/QDAgMv/Pw/sYvujWxkCAL+2vdz2JmAFxUNKTHFbjclln7cBx6m4PfWPgR0obknQaDdgTcP0dcBnJX0G2NP2urL+jcD6/vveRD0lCGIk6h8neDnFJ9afU+wRvA64VtIOwFeBw2y/nOI4+A5DXPYqYJKknYe96uIT/KsH7iVsocb76GxqmN7EU3vwAt7bMM4wyXbjU70A1tHwb2L7fIq9inXAIkkHNfTdHvjTs6g5RrkEQYxE11Ic6nnQ9sbyU/c4ijC4lqf+wD2g4tkEg56tM5DtP1LcwfT08hBJ/10+3zeg60+BOZKeU94d8t1l25XA+8qbgzHgj/4PgFOA71X8CXsx8PH+cRFJM5r0uYOn9iD6b3J2p+2vUNzR8hVl+/OBB2w/UWG9McIlCGIkWk5xttDPB7Q9bPuB8gybMyn2FhZTfBLfEp+jOGxym6Rbge8CTxszKB+JeQ5wA8XdTc+yvcz2CuBk4GpJNwOnDXjfJWVtC1XcOroKX6R4bOUtklaU009Tjhf8StJeZdPhwK3l4aSXAd8o2w8EvldRnTFK5O6jEV1K0ruBV9v+XIs+lwHH2b6jfZXFSJOzhiK6lO3L+w9hNVMeGluQEIjsEURE1FzGCCIiai5BEBFRcwmCiIiaSxBERNRcgiAioub+P3xx7QjxT3ySAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -490,7 +569,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "flaml (4min) r2 = 0.8505434326525669\n" + "flaml (4min) r2 = 0.8522136092023422\n" ] } ], @@ -522,6 +601,9 @@ "outputs": [ { "data": { + "text/html": [ + "
LGBMRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], "text/plain": [ "LGBMRegressor()" ] @@ -603,89 +685,91 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32m[I 2021-09-29 23:14:13,542]\u001b[0m A new study created in memory with name: no-name-c5c149a5-8d21-451d-8907-5246d780db77\u001b[0m\n", - "feature_fraction, val_score: 2237193094.198954: 14%|#4 | 1/7 [00:01<00:09, 1.51s/it]\u001b[32m[I 2021-09-29 23:14:15,079]\u001b[0m Trial 0 finished with value: 2237193094.1989536 and parameters: {'feature_fraction': 0.4}. Best is trial 0 with value: 2237193094.1989536.\u001b[0m\n", - "feature_fraction, val_score: 1961388150.442425: 29%|##8 | 2/7 [00:03<00:07, 1.56s/it]\u001b[32m[I 2021-09-29 23:14:16,753]\u001b[0m Trial 1 finished with value: 1961388150.442425 and parameters: {'feature_fraction': 1.0}. Best is trial 1 with value: 1961388150.442425.\u001b[0m\n", - "feature_fraction, val_score: 1961388150.442425: 43%|####2 | 3/7 [00:04<00:06, 1.51s/it]\u001b[32m[I 2021-09-29 23:14:18,158]\u001b[0m Trial 2 finished with value: 1988198059.953293 and parameters: {'feature_fraction': 0.5}. Best is trial 1 with value: 1961388150.442425.\u001b[0m\n", - "feature_fraction, val_score: 1959693958.979498: 57%|#####7 | 4/7 [00:06<00:04, 1.52s/it]\u001b[32m[I 2021-09-29 23:14:19,698]\u001b[0m Trial 3 finished with value: 1959693958.979498 and parameters: {'feature_fraction': 0.8}. Best is trial 3 with value: 1959693958.979498.\u001b[0m\n", - "feature_fraction, val_score: 1923826918.442117: 71%|#######1 | 5/7 [00:07<00:03, 1.55s/it]\u001b[32m[I 2021-09-29 23:14:21,298]\u001b[0m Trial 4 finished with value: 1923826918.4421172 and parameters: {'feature_fraction': 0.8999999999999999}. Best is trial 4 with value: 1923826918.4421172.\u001b[0m\n", - "feature_fraction, val_score: 1923826918.442117: 86%|########5 | 6/7 [00:09<00:01, 1.54s/it]\u001b[32m[I 2021-09-29 23:14:22,813]\u001b[0m Trial 5 finished with value: 1959693958.979498 and parameters: {'feature_fraction': 0.7}. Best is trial 4 with value: 1923826918.4421172.\u001b[0m\n", - "feature_fraction, val_score: 1923826918.442117: 100%|##########| 7/7 [00:10<00:00, 1.50s/it]\u001b[32m[I 2021-09-29 23:14:24,238]\u001b[0m Trial 6 finished with value: 1935542284.5841475 and parameters: {'feature_fraction': 0.6}. Best is trial 4 with value: 1923826918.4421172.\u001b[0m\n", - "feature_fraction, val_score: 1923826918.442117: 100%|##########| 7/7 [00:10<00:00, 1.53s/it]\n", - "num_leaves, val_score: 1894793944.507313: 5%|5 | 1/20 [00:02<00:47, 2.51s/it]\u001b[32m[I 2021-09-29 23:14:26,757]\u001b[0m Trial 7 finished with value: 1894793944.5073128 and parameters: {'num_leaves': 63}. Best is trial 7 with value: 1894793944.5073128.\u001b[0m\n", - "num_leaves, val_score: 1894793944.507313: 10%|# | 2/20 [00:10<01:17, 4.28s/it]\u001b[32m[I 2021-09-29 23:14:35,165]\u001b[0m Trial 8 finished with value: 1927707783.0138607 and parameters: {'num_leaves': 231}. Best is trial 7 with value: 1894793944.5073128.\u001b[0m\n", - "num_leaves, val_score: 1894793944.507313: 15%|#5 | 3/20 [00:13<01:06, 3.90s/it]\u001b[32m[I 2021-09-29 23:14:38,165]\u001b[0m Trial 9 finished with value: 1898863555.537152 and parameters: {'num_leaves': 80}. Best is trial 7 with value: 1894793944.5073128.\u001b[0m\n", - "num_leaves, val_score: 1894793944.507313: 20%|## | 4/20 [00:20<01:13, 4.60s/it]\u001b[32m[I 2021-09-29 23:14:44,401]\u001b[0m Trial 10 finished with value: 1895572554.0884657 and parameters: {'num_leaves': 170}. Best is trial 7 with value: 1894793944.5073128.\u001b[0m\n", - "num_leaves, val_score: 1894793944.507313: 25%|##5 | 5/20 [00:27<01:23, 5.55s/it]\u001b[32m[I 2021-09-29 23:14:52,188]\u001b[0m Trial 11 finished with value: 1932937258.238013 and parameters: {'num_leaves': 221}. Best is trial 7 with value: 1894793944.5073128.\u001b[0m\n", - "num_leaves, val_score: 1881619881.755456: 30%|### | 6/20 [00:32<01:12, 5.19s/it]\u001b[32m[I 2021-09-29 23:14:56,509]\u001b[0m Trial 12 finished with value: 1881619881.7554562 and parameters: {'num_leaves': 116}. Best is trial 12 with value: 1881619881.7554562.\u001b[0m\n", - "num_leaves, val_score: 1881619881.755456: 35%|###5 | 7/20 [00:37<01:09, 5.33s/it]\u001b[32m[I 2021-09-29 23:15:02,188]\u001b[0m Trial 13 finished with value: 1896214256.4755397 and parameters: {'num_leaves': 149}. Best is trial 12 with value: 1881619881.7554562.\u001b[0m\n", - "num_leaves, val_score: 1881619881.755456: 40%|#### | 8/20 [00:46<01:16, 6.39s/it]\u001b[32m[I 2021-09-29 23:15:11,047]\u001b[0m Trial 14 finished with value: 1932801730.248241 and parameters: {'num_leaves': 249}. Best is trial 12 with value: 1881619881.7554562.\u001b[0m\n", - "num_leaves, val_score: 1874343820.223125: 45%|####5 | 9/20 [00:50<01:00, 5.49s/it]\u001b[32m[I 2021-09-29 23:15:14,420]\u001b[0m Trial 15 finished with value: 1874343820.2231247 and parameters: {'num_leaves': 90}. Best is trial 15 with value: 1874343820.2231247.\u001b[0m\n", - "num_leaves, val_score: 1874343820.223125: 50%|##### | 10/20 [00:51<00:43, 4.33s/it]\u001b[32m[I 2021-09-29 23:15:16,039]\u001b[0m Trial 16 finished with value: 1953979611.4522753 and parameters: {'num_leaves': 33}. Best is trial 15 with value: 1874343820.2231247.\u001b[0m\n", - "num_leaves, val_score: 1874343820.223125: 55%|#####5 | 11/20 [00:52<00:29, 3.24s/it]\u001b[32m[I 2021-09-29 23:15:16,762]\u001b[0m Trial 17 finished with value: 2096126435.5363083 and parameters: {'num_leaves': 6}. Best is trial 15 with value: 1874343820.2231247.\u001b[0m\n", - "num_leaves, val_score: 1874343820.223125: 60%|###### | 12/20 [00:56<00:28, 3.60s/it]\u001b[32m[I 2021-09-29 23:15:21,192]\u001b[0m Trial 18 finished with value: 1906288467.0368485 and parameters: {'num_leaves': 104}. Best is trial 15 with value: 1874343820.2231247.\u001b[0m\n", - "num_leaves, val_score: 1868351924.901373: 65%|######5 | 13/20 [01:02<00:28, 4.06s/it]\u001b[32m[I 2021-09-29 23:15:26,319]\u001b[0m Trial 19 finished with value: 1868351924.901373 and parameters: {'num_leaves': 123}. Best is trial 19 with value: 1868351924.901373.\u001b[0m\n", - "num_leaves, val_score: 1868351924.901373: 70%|####### | 14/20 [01:10<00:31, 5.25s/it]\u001b[32m[I 2021-09-29 23:15:34,344]\u001b[0m Trial 20 finished with value: 1914548906.8882365 and parameters: {'num_leaves': 182}. Best is trial 19 with value: 1868351924.901373.\u001b[0m\n", - "num_leaves, val_score: 1868351924.901373: 75%|#######5 | 15/20 [01:13<00:23, 4.62s/it]\u001b[32m[I 2021-09-29 23:15:37,498]\u001b[0m Trial 21 finished with value: 1893247951.8046007 and parameters: {'num_leaves': 66}. Best is trial 19 with value: 1868351924.901373.\u001b[0m\n", - "num_leaves, val_score: 1868351924.901373: 80%|######## | 16/20 [01:19<00:20, 5.14s/it]\u001b[32m[I 2021-09-29 23:15:43,859]\u001b[0m Trial 22 finished with value: 1869033871.381424 and parameters: {'num_leaves': 137}. Best is trial 19 with value: 1868351924.901373.\u001b[0m\n", - "num_leaves, val_score: 1868351924.901373: 85%|########5 | 17/20 [01:26<00:16, 5.59s/it]\u001b[32m[I 2021-09-29 23:15:50,493]\u001b[0m Trial 23 finished with value: 1906428309.75546 and parameters: {'num_leaves': 139}. Best is trial 19 with value: 1868351924.901373.\u001b[0m\n", - "num_leaves, val_score: 1868351924.901373: 90%|######### | 18/20 [01:33<00:12, 6.08s/it]\u001b[32m[I 2021-09-29 23:15:57,732]\u001b[0m Trial 24 finished with value: 1908820539.6759791 and parameters: {'num_leaves': 190}. Best is trial 19 with value: 1868351924.901373.\u001b[0m\n", - "num_leaves, val_score: 1863498501.613274: 95%|#########5| 19/20 [01:38<00:05, 5.89s/it]\u001b[32m[I 2021-09-29 23:16:03,159]\u001b[0m Trial 25 finished with value: 1863498501.6132743 and parameters: {'num_leaves': 132}. Best is trial 25 with value: 1863498501.6132743.\u001b[0m\n", - "num_leaves, val_score: 1863498501.613274: 100%|##########| 20/20 [01:45<00:00, 5.98s/it]\u001b[32m[I 2021-09-29 23:16:09,353]\u001b[0m Trial 26 finished with value: 1931430333.393386 and parameters: {'num_leaves': 163}. Best is trial 25 with value: 1863498501.6132743.\u001b[0m\n", - "num_leaves, val_score: 1863498501.613274: 100%|##########| 20/20 [01:45<00:00, 5.26s/it]\n", - "bagging, val_score: 1863498501.613274: 10%|# | 1/10 [00:06<00:54, 6.06s/it]\u001b[32m[I 2021-09-29 23:16:15,418]\u001b[0m Trial 27 finished with value: 1972994781.1627002 and parameters: {'bagging_fraction': 0.8189909368436051, 'bagging_freq': 5}. Best is trial 27 with value: 1972994781.1627002.\u001b[0m\n", - "bagging, val_score: 1863498501.613274: 20%|## | 2/10 [00:11<00:48, 6.01s/it]\u001b[32m[I 2021-09-29 23:16:21,308]\u001b[0m Trial 28 finished with value: 2049496930.4993417 and parameters: {'bagging_fraction': 0.7873861289934212, 'bagging_freq': 3}. Best is trial 27 with value: 1972994781.1627002.\u001b[0m\n", - "bagging, val_score: 1863498501.613274: 30%|### | 3/10 [00:18<00:42, 6.12s/it]\u001b[32m[I 2021-09-29 23:16:27,693]\u001b[0m Trial 29 finished with value: 2139768933.1393518 and parameters: {'bagging_fraction': 0.4388276153024021, 'bagging_freq': 2}. Best is trial 27 with value: 1972994781.1627002.\u001b[0m\n", - "bagging, val_score: 1863498501.613274: 40%|#### | 4/10 [00:24<00:37, 6.28s/it]\u001b[32m[I 2021-09-29 23:16:34,335]\u001b[0m Trial 30 finished with value: 2158142780.1248493 and parameters: {'bagging_fraction': 0.4239288962558818, 'bagging_freq': 2}. Best is trial 27 with value: 1972994781.1627002.\u001b[0m\n", - "bagging, val_score: 1863498501.613274: 50%|##### | 5/10 [00:31<00:31, 6.22s/it]\u001b[32m[I 2021-09-29 23:16:40,435]\u001b[0m Trial 31 finished with value: 2010657702.029828 and parameters: {'bagging_fraction': 0.715314699361536, 'bagging_freq': 6}. Best is trial 27 with value: 1972994781.1627002.\u001b[0m\n", - "bagging, val_score: 1863498501.613274: 60%|###### | 6/10 [00:36<00:24, 6.06s/it]\u001b[32m[I 2021-09-29 23:16:46,125]\u001b[0m Trial 32 finished with value: 1964933494.828049 and parameters: {'bagging_fraction': 0.7738253951287195, 'bagging_freq': 3}. Best is trial 32 with value: 1964933494.828049.\u001b[0m\n", - "bagging, val_score: 1863498501.613274: 70%|####### | 7/10 [00:42<00:18, 6.01s/it]\u001b[32m[I 2021-09-29 23:16:52,023]\u001b[0m Trial 33 finished with value: 2026997372.947912 and parameters: {'bagging_fraction': 0.745596764852547, 'bagging_freq': 5}. Best is trial 32 with value: 1964933494.828049.\u001b[0m\n", - "bagging, val_score: 1863498501.613274: 80%|######## | 8/10 [00:47<00:11, 5.65s/it]\u001b[32m[I 2021-09-29 23:16:56,834]\u001b[0m Trial 34 finished with value: 1906233781.152753 and parameters: {'bagging_fraction': 0.9945003931775, 'bagging_freq': 1}. Best is trial 34 with value: 1906233781.152753.\u001b[0m\n", - "bagging, val_score: 1863498501.613274: 90%|######### | 9/10 [00:53<00:05, 5.85s/it]\u001b[32m[I 2021-09-29 23:17:03,142]\u001b[0m Trial 35 finished with value: 1977288663.8965576 and parameters: {'bagging_fraction': 0.7683884472431496, 'bagging_freq': 5}. Best is trial 34 with value: 1906233781.152753.\u001b[0m\n", - "bagging, val_score: 1863498501.613274: 100%|##########| 10/10 [00:59<00:00, 5.92s/it]\u001b[32m[I 2021-09-29 23:17:09,223]\u001b[0m Trial 36 finished with value: 2070275360.3552403 and parameters: {'bagging_fraction': 0.6452285190521252, 'bagging_freq': 2}. Best is trial 34 with value: 1906233781.152753.\u001b[0m\n", - "bagging, val_score: 1863498501.613274: 100%|##########| 10/10 [00:59<00:00, 5.99s/it]\n", - "feature_fraction_stage2, val_score: 1863498501.613274: 17%|#6 | 1/6 [00:04<00:22, 4.59s/it]\u001b[32m[I 2021-09-29 23:17:13,824]\u001b[0m Trial 37 finished with value: 1863498501.6132743 and parameters: {'feature_fraction': 0.852}. Best is trial 37 with value: 1863498501.6132743.\u001b[0m\n", - "feature_fraction_stage2, val_score: 1863498501.613274: 33%|###3 | 2/6 [00:09<00:18, 4.72s/it]\u001b[32m[I 2021-09-29 23:17:18,825]\u001b[0m Trial 38 finished with value: 1863498501.6132743 and parameters: {'feature_fraction': 0.8839999999999999}. Best is trial 37 with value: 1863498501.6132743.\u001b[0m\n", - "feature_fraction_stage2, val_score: 1863498501.613274: 50%|##### | 3/6 [00:14<00:14, 4.69s/it]\u001b[32m[I 2021-09-29 23:17:23,441]\u001b[0m Trial 39 finished with value: 1863498501.6132743 and parameters: {'feature_fraction': 0.9159999999999999}. Best is trial 37 with value: 1863498501.6132743.\u001b[0m\n", - "feature_fraction_stage2, val_score: 1863498501.613274: 67%|######6 | 4/6 [00:18<00:09, 4.69s/it]\u001b[32m[I 2021-09-29 23:17:28,139]\u001b[0m Trial 40 finished with value: 1950431559.883238 and parameters: {'feature_fraction': 0.948}. Best is trial 37 with value: 1863498501.6132743.\u001b[0m\n", - "feature_fraction_stage2, val_score: 1863498501.613274: 83%|########3 | 5/6 [00:23<00:04, 4.74s/it]\u001b[32m[I 2021-09-29 23:17:33,002]\u001b[0m Trial 41 finished with value: 1863498501.6132743 and parameters: {'feature_fraction': 0.82}. Best is trial 37 with value: 1863498501.6132743.\u001b[0m\n", - "feature_fraction_stage2, val_score: 1863498501.613274: 100%|##########| 6/6 [00:28<00:00, 4.73s/it]\u001b[32m[I 2021-09-29 23:17:37,694]\u001b[0m Trial 42 finished with value: 1950431559.883238 and parameters: {'feature_fraction': 0.9799999999999999}. Best is trial 37 with value: 1863498501.6132743.\u001b[0m\n", - "feature_fraction_stage2, val_score: 1863498501.613274: 100%|##########| 6/6 [00:28<00:00, 4.74s/it]\n", - "regularization_factors, val_score: 1863498501.613274: 5%|5 | 1/20 [00:04<01:30, 4.76s/it]\u001b[32m[I 2021-09-29 23:17:42,464]\u001b[0m Trial 43 finished with value: 1900519550.3985364 and parameters: {'lambda_l1': 1.724493294436389e-07, 'lambda_l2': 0.0011802180675328437}. Best is trial 43 with value: 1900519550.3985364.\u001b[0m\n", - "regularization_factors, val_score: 1863498501.613274: 10%|# | 2/20 [00:09<01:25, 4.76s/it]\u001b[32m[I 2021-09-29 23:17:47,207]\u001b[0m Trial 44 finished with value: 1897124810.0132961 and parameters: {'lambda_l1': 0.015497205121979793, 'lambda_l2': 0.00015637359721725182}. Best is trial 44 with value: 1897124810.0132961.\u001b[0m\n", - "regularization_factors, val_score: 1863498501.613274: 15%|#5 | 3/20 [00:14<01:21, 4.77s/it]\u001b[32m[I 2021-09-29 23:17:51,995]\u001b[0m Trial 45 finished with value: 1891252495.3075037 and parameters: {'lambda_l1': 9.16513906590219e-07, 'lambda_l2': 0.026000627128814197}. Best is trial 45 with value: 1891252495.3075037.\u001b[0m\n", - "regularization_factors, val_score: 1863498500.800182: 20%|## | 4/20 [00:19<01:16, 4.77s/it]\u001b[32m[I 2021-09-29 23:17:56,768]\u001b[0m Trial 46 finished with value: 1863498500.8001816 and parameters: {'lambda_l1': 0.0011712453303529063, 'lambda_l2': 6.256511928312648e-08}. Best is trial 46 with value: 1863498500.8001816.\u001b[0m\n", - "regularization_factors, val_score: 1863498470.597524: 25%|##5 | 5/20 [00:24<01:12, 4.84s/it]\u001b[32m[I 2021-09-29 23:18:01,762]\u001b[0m Trial 47 finished with value: 1863498470.5975237 and parameters: {'lambda_l1': 0.053923251257381184, 'lambda_l2': 6.016404526705668e-08}. Best is trial 47 with value: 1863498470.5975237.\u001b[0m\n", - "regularization_factors, val_score: 1863498470.597524: 30%|### | 6/20 [00:28<01:07, 4.82s/it]\u001b[32m[I 2021-09-29 23:18:06,535]\u001b[0m Trial 48 finished with value: 1863498500.6828027 and parameters: {'lambda_l1': 6.008912045555043e-05, 'lambda_l2': 3.5014865430650066e-07}. Best is trial 47 with value: 1863498470.5975237.\u001b[0m\n", - "regularization_factors, val_score: 1863498144.156982: 35%|###5 | 7/20 [00:34<01:04, 4.96s/it]\u001b[32m[I 2021-09-29 23:18:11,824]\u001b[0m Trial 49 finished with value: 1863498144.1569824 and parameters: {'lambda_l1': 0.2873876088430125, 'lambda_l2': 6.275345656705353e-05}. Best is trial 49 with value: 1863498144.1569824.\u001b[0m\n", - "regularization_factors, val_score: 1829411923.127120: 40%|#### | 8/20 [00:39<00:59, 4.96s/it]\u001b[32m[I 2021-09-29 23:18:16,784]\u001b[0m Trial 50 finished with value: 1829411923.1271203 and parameters: {'lambda_l1': 0.014530100017980814, 'lambda_l2': 0.013764223496447852}. Best is trial 50 with value: 1829411923.1271203.\u001b[0m\n", - "regularization_factors, val_score: 1829411923.127120: 45%|####5 | 9/20 [00:44<00:54, 4.95s/it]\u001b[32m[I 2021-09-29 23:18:21,714]\u001b[0m Trial 51 finished with value: 1908686079.6273117 and parameters: {'lambda_l1': 4.049940611761022e-08, 'lambda_l2': 0.00040034467394794076}. Best is trial 50 with value: 1829411923.1271203.\u001b[0m\n", - "regularization_factors, val_score: 1829411923.127120: 50%|##### | 10/20 [00:49<00:49, 4.99s/it]\u001b[32m[I 2021-09-29 23:18:26,790]\u001b[0m Trial 52 finished with value: 1885012218.0004046 and parameters: {'lambda_l1': 0.0002200189403526506, 'lambda_l2': 0.20302349889094043}. Best is trial 50 with value: 1829411923.1271203.\u001b[0m\n", - "regularization_factors, val_score: 1829411923.127120: 55%|#####5 | 11/20 [00:54<00:45, 5.03s/it]\u001b[32m[I 2021-09-29 23:18:31,926]\u001b[0m Trial 53 finished with value: 1906625061.3932586 and parameters: {'lambda_l1': 5.510584147431707, 'lambda_l2': 1.5865265278948395}. Best is trial 50 with value: 1829411923.1271203.\u001b[0m\n", - "regularization_factors, val_score: 1829411923.127120: 60%|###### | 12/20 [00:59<00:41, 5.13s/it]\u001b[32m[I 2021-09-29 23:18:37,269]\u001b[0m Trial 54 finished with value: 1913356940.3398488 and parameters: {'lambda_l1': 7.919177639141472, 'lambda_l2': 7.0464807271647355e-06}. Best is trial 50 with value: 1829411923.1271203.\u001b[0m\n", - "regularization_factors, val_score: 1829411923.127120: 65%|######5 | 13/20 [01:04<00:36, 5.20s/it]\u001b[32m[I 2021-09-29 23:18:42,634]\u001b[0m Trial 55 finished with value: 1943493473.7805178 and parameters: {'lambda_l1': 0.2709128839307005, 'lambda_l2': 0.008152038140390653}. Best is trial 50 with value: 1829411923.1271203.\u001b[0m\n", - "regularization_factors, val_score: 1829411923.127120: 70%|####### | 14/20 [01:10<00:31, 5.18s/it]\u001b[32m[I 2021-09-29 23:18:47,759]\u001b[0m Trial 56 finished with value: 1869993775.185964 and parameters: {'lambda_l1': 0.6252702501891693, 'lambda_l2': 1.1976465197068111e-05}. Best is trial 50 with value: 1829411923.1271203.\u001b[0m\n", - "regularization_factors, val_score: 1829411923.127120: 75%|#######5 | 15/20 [01:14<00:25, 5.04s/it]\u001b[32m[I 2021-09-29 23:18:52,482]\u001b[0m Trial 57 finished with value: 1863498474.3189669 and parameters: {'lambda_l1': 0.0031261290560461548, 'lambda_l2': 8.158381653124474e-06}. Best is trial 50 with value: 1829411923.1271203.\u001b[0m\n", - "regularization_factors, val_score: 1829411923.127120: 80%|######## | 16/20 [01:19<00:19, 4.95s/it]\u001b[32m[I 2021-09-29 23:18:57,236]\u001b[0m Trial 58 finished with value: 1906922013.1929636 and parameters: {'lambda_l1': 5.0437093419934566e-06, 'lambda_l2': 8.510701285476182}. Best is trial 50 with value: 1829411923.1271203.\u001b[0m\n", - "regularization_factors, val_score: 1829411923.127120: 85%|########5 | 17/20 [01:25<00:15, 5.17s/it]\u001b[32m[I 2021-09-29 23:19:02,913]\u001b[0m Trial 59 finished with value: 1941548787.4363914 and parameters: {'lambda_l1': 0.489782747632979, 'lambda_l2': 0.010063061940333582}. Best is trial 50 with value: 1829411923.1271203.\u001b[0m\n", - "regularization_factors, val_score: 1829411923.127120: 90%|######### | 18/20 [01:30<00:10, 5.17s/it]\u001b[32m[I 2021-09-29 23:19:08,065]\u001b[0m Trial 60 finished with value: 1922251238.1017878 and parameters: {'lambda_l1': 0.014630309366687438, 'lambda_l2': 0.20905649983873378}. Best is trial 50 with value: 1829411923.1271203.\u001b[0m\n", - "regularization_factors, val_score: 1829411923.127120: 95%|#########5| 19/20 [01:35<00:05, 5.09s/it]\u001b[32m[I 2021-09-29 23:19:12,966]\u001b[0m Trial 61 finished with value: 1907187734.8434992 and parameters: {'lambda_l1': 2.908849929024249, 'lambda_l2': 6.175780052432868e-05}. Best is trial 50 with value: 1829411923.1271203.\u001b[0m\n", - "regularization_factors, val_score: 1829411923.127120: 100%|##########| 20/20 [01:40<00:00, 5.08s/it]\u001b[32m[I 2021-09-29 23:19:18,016]\u001b[0m Trial 62 finished with value: 1887887228.6365638 and parameters: {'lambda_l1': 0.08176402124056348, 'lambda_l2': 0.0022386651346889396}. Best is trial 50 with value: 1829411923.1271203.\u001b[0m\n", - "regularization_factors, val_score: 1829411923.127120: 100%|##########| 20/20 [01:40<00:00, 5.02s/it]\n", - "min_data_in_leaf, val_score: 1829411923.127120: 20%|## | 1/5 [00:05<00:21, 5.27s/it]\u001b[32m[I 2021-09-29 23:19:23,298]\u001b[0m Trial 63 finished with value: 1887743370.2363958 and parameters: {'min_child_samples': 25}. Best is trial 63 with value: 1887743370.2363958.\u001b[0m\n", - "min_data_in_leaf, val_score: 1829411923.127120: 40%|#### | 2/5 [00:11<00:16, 5.60s/it]\u001b[32m[I 2021-09-29 23:19:29,669]\u001b[0m Trial 64 finished with value: 1988738364.2495584 and parameters: {'min_child_samples': 100}. Best is trial 63 with value: 1887743370.2363958.\u001b[0m\n", - "min_data_in_leaf, val_score: 1829411923.127120: 60%|###### | 3/5 [00:16<00:10, 5.32s/it]\u001b[32m[I 2021-09-29 23:19:34,327]\u001b[0m Trial 65 finished with value: 1872759368.4778924 and parameters: {'min_child_samples': 10}. Best is trial 65 with value: 1872759368.4778924.\u001b[0m\n", - "min_data_in_leaf, val_score: 1829411923.127120: 80%|######## | 4/5 [00:20<00:04, 4.98s/it]\u001b[32m[I 2021-09-29 23:19:38,517]\u001b[0m Trial 66 finished with value: 1866723989.0731173 and parameters: {'min_child_samples': 5}. Best is trial 66 with value: 1866723989.0731173.\u001b[0m\n", - "min_data_in_leaf, val_score: 1829411923.127120: 100%|##########| 5/5 [00:27<00:00, 5.62s/it]\u001b[32m[I 2021-09-29 23:19:45,625]\u001b[0m Trial 67 finished with value: 1965123941.88074 and parameters: {'min_child_samples': 50}. Best is trial 66 with value: 1866723989.0731173.\u001b[0m\n", - "min_data_in_leaf, val_score: 1829411923.127120: 100%|##########| 5/5 [00:27<00:00, 5.52s/it]" + "\u001b[32m[I 2022-07-01 15:26:25,531]\u001b[0m A new study created in memory with name: no-name-0bd516fd-ed41-4e00-874e-ff99ff30eb94\u001b[0m\n", + "feature_fraction, val_score: inf: 0%| | 0/7 [00:00,\n", - " reg_alpha=0.007704104902643932, reg_lambda=0.003151767359549649,\n", + " objective=,\n", + " reg_alpha=0.007704104902643932, reg_lambda=0.0031517673595496476,\n", " verbose=-1)\n", - "[flaml.automl: 09-29 23:22:20] {2122} INFO - retrain my_lgbm for 1.6s\n", - "[flaml.automl: 09-29 23:22:20] {2128} INFO - retrained model: LGBMRegressor(colsample_bytree=0.8422311526890249,\n", - " learning_rate=0.4130805075333343, max_bin=1023,\n", - " min_child_samples=10, n_estimators=95, num_leaves=221,\n", - " objective=,\n", - " reg_alpha=0.007704104902643932, reg_lambda=0.003151767359549649,\n", - " verbose=-1)\n", - "[flaml.automl: 09-29 23:22:20] {1557} INFO - fit succeeded\n", - "[flaml.automl: 09-29 23:22:20] {1558} INFO - Time taken to find the best model: 121.97463893890381\n", - "[flaml.automl: 09-29 23:22:20] {1569} WARNING - Time taken to find the best model is 81% of the provided time budget and not all estimators' hyperparameter search converged. Consider increasing the time budget.\n" + "[flaml.automl: 07-01 15:35:50] {2672} INFO - fit succeeded\n", + "[flaml.automl: 07-01 15:35:50] {2673} INFO - Time taken to find the best model: 128.89934134483337\n", + "[flaml.automl: 07-01 15:35:50] {2684} WARNING - Time taken to find the best model is 86% of the provided time budget and not all estimators' hyperparameter search converged. Consider increasing the time budget.\n" ] } ], @@ -920,10 +999,10 @@ "name": "stdout", "output_type": "stream", "text": [ - "Best hyperparmeter config: {'n_estimators': 95, 'num_leaves': 221, 'min_child_samples': 10, 'learning_rate': 0.4130805075333343, 'log_max_bin': 10, 'colsample_bytree': 0.8422311526890249, 'reg_alpha': 0.007704104902643932, 'reg_lambda': 0.003151767359549649}\n", + "Best hyperparmeter config: {'n_estimators': 95, 'num_leaves': 221, 'min_child_samples': 10, 'learning_rate': 0.4130805075333333, 'log_max_bin': 10, 'colsample_bytree': 0.8422311526890249, 'reg_alpha': 0.007704104902643932, 'reg_lambda': 0.0031517673595496476}\n", "Best r2 on validation data: 0.8368\n", - "Training duration of best run: 6.404 s\n", - "Predicted labels [161485.59767093 248585.87889042 157837.93378105 ... 184356.07034452\n", + "Training duration of best run: 1.508 s\n", + "Predicted labels [161485.59767093 248585.87889042 157837.93378106 ... 184356.07034452\n", " 223247.80995858 259281.61167122]\n", "True labels 14740 136900.0\n", "10101 241300.0\n", @@ -937,9 +1016,9 @@ "8522 227300.0\n", "16798 265600.0\n", "Name: median_house_value, Length: 5160, dtype: float64\n", - "r2 = 0.8429833151406843\n", - "mse = 2075526075.9236276\n", - "mae = 30102.910560642205\n" + "r2 = 0.842983315140684\n", + "mse = 2075526075.9236298\n", + "mae = 30102.91056064235\n" ] } ], @@ -960,11 +1039,9 @@ } ], "metadata": { - "interpreter": { - "hash": "0cfea3304185a9579d09e0953576b57c8581e46e6ebc6dfeb681bc5a511f7544" - }, "kernelspec": { - "display_name": "Python 3.8.0 64-bit ('blend': conda)", + "display_name": "Python 3.9.12 64-bit", + "language": "python", "name": "python3" }, "language_info": { @@ -977,7 +1054,12 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.9.12" + }, + "vscode": { + "interpreter": { + "hash": "949777d72b0d2535278d3dc13498b2535136f6dfe0678499012e853ee9abcab1" + } } }, "nbformat": 4, diff --git a/notebook/automl_xgboost.ipynb b/notebook/automl_xgboost.ipynb index bd6a12b87..9c99ca01d 100644 --- a/notebook/automl_xgboost.ipynb +++ b/notebook/automl_xgboost.ipynb @@ -39,7 +39,7 @@ "metadata": {}, "outputs": [], "source": [ - "%pip install flaml[notebook]" + "%pip install flaml[notebook]==1.0.8" ] }, { @@ -66,6 +66,14 @@ "tags": [] }, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/root/.local/lib/python3.9/site-packages/xgboost/compat.py:31: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n" + ] + }, { "name": "stdout", "output_type": "stream", @@ -142,83 +150,355 @@ "name": "stderr", "output_type": "stream", "text": [ - "[flaml.automl: 11-23 01:28:26] {1861} INFO - task = regression\n", - "[flaml.automl: 11-23 01:28:26] {1863} INFO - Data split method: uniform\n", - "[flaml.automl: 11-23 01:28:26] {1867} INFO - Evaluation method: cv\n", - "[flaml.automl: 11-23 01:28:26] {1933} INFO - Minimizing error metric: 1-r2\n", - "[flaml.automl: 11-23 01:28:26] {1985} INFO - List of ML learners in AutoML Run: ['xgboost']\n", - "[flaml.automl: 11-23 01:28:26] {2223} INFO - iteration 0, current learner xgboost\n", - "[flaml.automl: 11-23 01:28:26] {2337} INFO - Estimated sufficient time budget=1362s. Estimated necessary time budget=1s.\n", - "[flaml.automl: 11-23 01:28:26] {2417} INFO - at 0.2s,\testimator xgboost's best error=2.1267,\tbest estimator xgboost's best error=2.1267\n", - "[flaml.automl: 11-23 01:28:26] {2223} INFO - iteration 1, current learner xgboost\n", - "[flaml.automl: 11-23 01:28:26] {2417} INFO - at 0.3s,\testimator xgboost's best error=2.1267,\tbest estimator xgboost's best error=2.1267\n", - "[flaml.automl: 11-23 01:28:26] {2223} INFO - iteration 2, current learner xgboost\n", - "[flaml.automl: 11-23 01:28:26] {2417} INFO - at 0.4s,\testimator xgboost's best error=0.8485,\tbest estimator xgboost's best error=0.8485\n", - "[flaml.automl: 11-23 01:28:26] {2223} INFO - iteration 3, current learner xgboost\n", - "[flaml.automl: 11-23 01:28:27] {2417} INFO - at 0.5s,\testimator xgboost's best error=0.3799,\tbest estimator xgboost's best error=0.3799\n", - "[flaml.automl: 11-23 01:28:27] {2223} INFO - iteration 4, current learner xgboost\n", - "[flaml.automl: 11-23 01:28:27] {2417} INFO - at 0.6s,\testimator xgboost's best error=0.3799,\tbest estimator xgboost's best error=0.3799\n", - "[flaml.automl: 11-23 01:28:27] {2223} INFO - iteration 5, current learner xgboost\n", - "[flaml.automl: 11-23 01:28:27] {2417} INFO - at 0.8s,\testimator xgboost's best error=0.3799,\tbest estimator xgboost's best error=0.3799\n", - "[flaml.automl: 11-23 01:28:27] {2223} INFO - iteration 6, current learner xgboost\n", - "[flaml.automl: 11-23 01:28:27] {2417} INFO - at 1.0s,\testimator xgboost's best error=0.2992,\tbest estimator xgboost's best error=0.2992\n", - "[flaml.automl: 11-23 01:28:27] {2223} INFO - iteration 7, current learner xgboost\n", - "[flaml.automl: 11-23 01:28:27] {2417} INFO - at 1.2s,\testimator xgboost's best error=0.2992,\tbest estimator xgboost's best error=0.2992\n", - "[flaml.automl: 11-23 01:28:27] {2223} INFO - iteration 8, current learner xgboost\n", - "[flaml.automl: 11-23 01:28:27] {2417} INFO - at 1.3s,\testimator xgboost's best error=0.2992,\tbest estimator xgboost's best error=0.2992\n", - "[flaml.automl: 11-23 01:28:27] {2223} INFO - iteration 9, current learner xgboost\n", - "[flaml.automl: 11-23 01:28:28] {2417} INFO - at 1.5s,\testimator xgboost's best error=0.2513,\tbest estimator xgboost's best error=0.2513\n", - "[flaml.automl: 11-23 01:28:28] {2223} INFO - iteration 10, current learner xgboost\n", - "[flaml.automl: 11-23 01:28:28] {2417} INFO - at 1.6s,\testimator xgboost's best error=0.2513,\tbest estimator xgboost's best error=0.2513\n", - "[flaml.automl: 11-23 01:28:28] {2223} INFO - iteration 11, current learner xgboost\n", - "[flaml.automl: 11-23 01:28:28] {2417} INFO - at 1.8s,\testimator xgboost's best error=0.2513,\tbest estimator xgboost's best error=0.2513\n", - "[flaml.automl: 11-23 01:28:28] {2223} INFO - iteration 12, current learner xgboost\n", - "[flaml.automl: 11-23 01:28:28] {2417} INFO - at 2.1s,\testimator xgboost's best error=0.2113,\tbest estimator xgboost's best error=0.2113\n", - "[flaml.automl: 11-23 01:28:28] {2223} INFO - iteration 13, current learner xgboost\n", - "[flaml.automl: 11-23 01:28:28] {2417} INFO - at 2.3s,\testimator xgboost's best error=0.2113,\tbest estimator xgboost's best error=0.2113\n", - "[flaml.automl: 11-23 01:28:28] {2223} INFO - iteration 14, current learner xgboost\n", - "[flaml.automl: 11-23 01:28:29] {2417} INFO - at 2.9s,\testimator xgboost's best error=0.2090,\tbest estimator xgboost's best error=0.2090\n", - "[flaml.automl: 11-23 01:28:29] {2223} INFO - iteration 15, current learner xgboost\n", - "[flaml.automl: 11-23 01:28:29] {2417} INFO - at 3.4s,\testimator xgboost's best error=0.2090,\tbest estimator xgboost's best error=0.2090\n", - "[flaml.automl: 11-23 01:28:29] {2223} INFO - iteration 16, current learner xgboost\n", - "[flaml.automl: 11-23 01:28:31] {2417} INFO - at 4.7s,\testimator xgboost's best error=0.1919,\tbest estimator xgboost's best error=0.1919\n", - "[flaml.automl: 11-23 01:28:31] {2223} INFO - iteration 17, current learner xgboost\n", - "[flaml.automl: 11-23 01:28:31] {2417} INFO - at 5.1s,\testimator xgboost's best error=0.1919,\tbest estimator xgboost's best error=0.1919\n", - "[flaml.automl: 11-23 01:28:31] {2223} INFO - iteration 18, current learner xgboost\n", - "[flaml.automl: 11-23 01:28:34] {2417} INFO - at 8.1s,\testimator xgboost's best error=0.1797,\tbest estimator xgboost's best error=0.1797\n", - "[flaml.automl: 11-23 01:28:34] {2223} INFO - iteration 19, current learner xgboost\n", - "[flaml.automl: 11-23 01:28:35] {2417} INFO - at 8.8s,\testimator xgboost's best error=0.1797,\tbest estimator xgboost's best error=0.1797\n", - "[flaml.automl: 11-23 01:28:35] {2223} INFO - iteration 20, current learner xgboost\n", - "[flaml.automl: 11-23 01:29:03] {2417} INFO - at 36.8s,\testimator xgboost's best error=0.1797,\tbest estimator xgboost's best error=0.1797\n", - "[flaml.automl: 11-23 01:29:03] {2223} INFO - iteration 21, current learner xgboost\n", - "[flaml.automl: 11-23 01:29:05] {2417} INFO - at 38.9s,\testimator xgboost's best error=0.1797,\tbest estimator xgboost's best error=0.1797\n", - "[flaml.automl: 11-23 01:29:05] {2223} INFO - iteration 22, current learner xgboost\n", - "[flaml.automl: 11-23 01:29:11] {2417} INFO - at 45.4s,\testimator xgboost's best error=0.1782,\tbest estimator xgboost's best error=0.1782\n", - "[flaml.automl: 11-23 01:29:11] {2223} INFO - iteration 23, current learner xgboost\n", - "[flaml.automl: 11-23 01:29:17] {2417} INFO - at 51.2s,\testimator xgboost's best error=0.1782,\tbest estimator xgboost's best error=0.1782\n", - "[flaml.automl: 11-23 01:29:17] {2223} INFO - iteration 24, current learner xgboost\n", - "[flaml.automl: 11-23 01:29:25] {2417} INFO - at 58.5s,\testimator xgboost's best error=0.1782,\tbest estimator xgboost's best error=0.1782\n", - "[flaml.automl: 11-23 01:29:25] {2223} INFO - iteration 25, current learner xgboost\n", - "[flaml.automl: 11-23 01:29:26] {2417} INFO - at 59.8s,\testimator xgboost's best error=0.1782,\tbest estimator xgboost's best error=0.1782\n", - "[flaml.automl: 11-23 01:29:26] {2223} INFO - iteration 26, current learner xgboost\n", - "[flaml.automl: 11-23 01:30:13] {2417} INFO - at 107.3s,\testimator xgboost's best error=0.1660,\tbest estimator xgboost's best error=0.1660\n", - "[flaml.automl: 11-23 01:30:23] {2629} INFO - retrain xgboost for 9.5s\n", - "[flaml.automl: 11-23 01:30:23] {2634} INFO - retrained model: XGBRegressor(base_score=0.5, booster='gbtree',\n", + "[flaml.automl: 07-01 15:43:46] {2427} INFO - task = regression\n", + "[flaml.automl: 07-01 15:43:46] {2429} INFO - Data split method: uniform\n", + "[flaml.automl: 07-01 15:43:46] {2432} INFO - Evaluation method: cv\n", + "[flaml.automl: 07-01 15:43:46] {2501} INFO - Minimizing error metric: 1-r2\n", + "[flaml.automl: 07-01 15:43:46] {2641} INFO - List of ML learners in AutoML Run: ['xgboost']\n", + "[flaml.automl: 07-01 15:43:46] {2933} INFO - iteration 0, current learner xgboost\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:43:46] {3061} INFO - Estimated sufficient time budget=1683s. Estimated necessary time budget=2s.\n", + "[flaml.automl: 07-01 15:43:46] {3108} INFO - at 0.2s,\testimator xgboost's best error=2.1267,\tbest estimator xgboost's best error=2.1267\n", + "[flaml.automl: 07-01 15:43:46] {2933} INFO - iteration 1, current learner xgboost\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:43:46] {3108} INFO - at 0.4s,\testimator xgboost's best error=2.1267,\tbest estimator xgboost's best error=2.1267\n", + "[flaml.automl: 07-01 15:43:46] {2933} INFO - iteration 2, current learner xgboost\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:43:46] {3108} INFO - at 0.7s,\testimator xgboost's best error=0.8485,\tbest estimator xgboost's best error=0.8485\n", + "[flaml.automl: 07-01 15:43:46] {2933} INFO - iteration 3, current learner xgboost\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:43:47] {3108} INFO - at 1.1s,\testimator xgboost's best error=0.3799,\tbest estimator xgboost's best error=0.3799\n", + "[flaml.automl: 07-01 15:43:47] {2933} INFO - iteration 4, current learner xgboost\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:43:47] {3108} INFO - at 1.2s,\testimator xgboost's best error=0.3799,\tbest estimator xgboost's best error=0.3799\n", + "[flaml.automl: 07-01 15:43:47] {2933} INFO - iteration 5, current learner xgboost\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:43:47] {3108} INFO - at 1.4s,\testimator xgboost's best error=0.3799,\tbest estimator xgboost's best error=0.3799\n", + "[flaml.automl: 07-01 15:43:47] {2933} INFO - iteration 6, current learner xgboost\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:43:48] {3108} INFO - at 1.8s,\testimator xgboost's best error=0.2992,\tbest estimator xgboost's best error=0.2992\n", + "[flaml.automl: 07-01 15:43:48] {2933} INFO - iteration 7, current learner xgboost\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:43:48] {3108} INFO - at 2.1s,\testimator xgboost's best error=0.2992,\tbest estimator xgboost's best error=0.2992\n", + "[flaml.automl: 07-01 15:43:48] {2933} INFO - iteration 8, current learner xgboost\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:43:48] {3108} INFO - at 2.4s,\testimator xgboost's best error=0.2992,\tbest estimator xgboost's best error=0.2992\n", + "[flaml.automl: 07-01 15:43:48] {2933} INFO - iteration 9, current learner xgboost\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:43:48] {3108} INFO - at 2.7s,\testimator xgboost's best error=0.2513,\tbest estimator xgboost's best error=0.2513\n", + "[flaml.automl: 07-01 15:43:48] {2933} INFO - iteration 10, current learner xgboost\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:43:49] {3108} INFO - at 3.0s,\testimator xgboost's best error=0.2513,\tbest estimator xgboost's best error=0.2513\n", + "[flaml.automl: 07-01 15:43:49] {2933} INFO - iteration 11, current learner xgboost\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:43:49] {3108} INFO - at 3.4s,\testimator xgboost's best error=0.2513,\tbest estimator xgboost's best error=0.2513\n", + "[flaml.automl: 07-01 15:43:49] {2933} INFO - iteration 12, current learner xgboost\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:43:50] {3108} INFO - at 4.0s,\testimator xgboost's best error=0.2113,\tbest estimator xgboost's best error=0.2113\n", + "[flaml.automl: 07-01 15:43:50] {2933} INFO - iteration 13, current learner xgboost\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:43:50] {3108} INFO - at 4.4s,\testimator xgboost's best error=0.2113,\tbest estimator xgboost's best error=0.2113\n", + "[flaml.automl: 07-01 15:43:50] {2933} INFO - iteration 14, current learner xgboost\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:43:51] {3108} INFO - at 5.1s,\testimator xgboost's best error=0.2090,\tbest estimator xgboost's best error=0.2090\n", + "[flaml.automl: 07-01 15:43:51] {2933} INFO - iteration 15, current learner xgboost\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:43:51] {3108} INFO - at 5.6s,\testimator xgboost's best error=0.2090,\tbest estimator xgboost's best error=0.2090\n", + "[flaml.automl: 07-01 15:43:51] {2933} INFO - iteration 16, current learner xgboost\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:43:53] {3108} INFO - at 6.9s,\testimator xgboost's best error=0.1919,\tbest estimator xgboost's best error=0.1919\n", + "[flaml.automl: 07-01 15:43:53] {2933} INFO - iteration 17, current learner xgboost\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:43:53] {3108} INFO - at 7.4s,\testimator xgboost's best error=0.1919,\tbest estimator xgboost's best error=0.1919\n", + "[flaml.automl: 07-01 15:43:53] {2933} INFO - iteration 18, current learner xgboost\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:43:57] {3108} INFO - at 11.1s,\testimator xgboost's best error=0.1797,\tbest estimator xgboost's best error=0.1797\n", + "[flaml.automl: 07-01 15:43:57] {2933} INFO - iteration 19, current learner xgboost\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:43:58] {3108} INFO - at 12.4s,\testimator xgboost's best error=0.1797,\tbest estimator xgboost's best error=0.1797\n", + "[flaml.automl: 07-01 15:43:58] {2933} INFO - iteration 20, current learner xgboost\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:44:17] {3108} INFO - at 31.4s,\testimator xgboost's best error=0.1797,\tbest estimator xgboost's best error=0.1797\n", + "[flaml.automl: 07-01 15:44:17] {2933} INFO - iteration 21, current learner xgboost\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:44:20] {3108} INFO - at 34.0s,\testimator xgboost's best error=0.1797,\tbest estimator xgboost's best error=0.1797\n", + "[flaml.automl: 07-01 15:44:20] {2933} INFO - iteration 22, current learner xgboost\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:44:25] {3108} INFO - at 39.6s,\testimator xgboost's best error=0.1782,\tbest estimator xgboost's best error=0.1782\n", + "[flaml.automl: 07-01 15:44:25] {2933} INFO - iteration 23, current learner xgboost\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:44:31] {3108} INFO - at 44.8s,\testimator xgboost's best error=0.1782,\tbest estimator xgboost's best error=0.1782\n", + "[flaml.automl: 07-01 15:44:31] {2933} INFO - iteration 24, current learner xgboost\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:44:39] {3108} INFO - at 52.8s,\testimator xgboost's best error=0.1782,\tbest estimator xgboost's best error=0.1782\n", + "[flaml.automl: 07-01 15:44:39] {2933} INFO - iteration 25, current learner xgboost\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:44:40] {3108} INFO - at 54.2s,\testimator xgboost's best error=0.1782,\tbest estimator xgboost's best error=0.1782\n", + "[flaml.automl: 07-01 15:44:40] {2933} INFO - iteration 26, current learner xgboost\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:18] {3108} INFO - at 92.2s,\testimator xgboost's best error=0.1660,\tbest estimator xgboost's best error=0.1660\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:26] {3372} INFO - retrain xgboost for 7.9s\n", + "[flaml.automl: 07-01 15:45:26] {3379} INFO - retrained model: XGBRegressor(base_score=0.5, booster='gbtree',\n", " colsample_bylevel=0.5656764254642628, colsample_bynode=1,\n", " colsample_bytree=0.7313266091895249, gamma=0, gpu_id=-1,\n", " grow_policy='lossguide', importance_type='gain',\n", - " interaction_constraints='', learning_rate=0.034786853332414935,\n", + " interaction_constraints='', learning_rate=0.03478685333241491,\n", " max_delta_step=0, max_depth=0, max_leaves=160,\n", - " min_child_weight=32.57408640781376, missing=nan,\n", + " min_child_weight=32.57408640781372, missing=nan,\n", " monotone_constraints='()', n_estimators=776, n_jobs=-1,\n", " num_parallel_tree=1, random_state=0,\n", - " reg_alpha=0.005771390107656191, reg_lambda=1.49126672786588,\n", + " reg_alpha=0.005771390107656191, reg_lambda=1.4912667278658707,\n", " scale_pos_weight=1, subsample=0.9152991332236934,\n", " tree_method='hist', use_label_encoder=False, validate_parameters=1,\n", " verbosity=0)\n", - "[flaml.automl: 11-23 01:30:23] {2014} INFO - fit succeeded\n", - "[flaml.automl: 11-23 01:30:23] {2016} INFO - Time taken to find the best model: 107.32724642753601\n", - "[flaml.automl: 11-23 01:30:23] {2030} WARNING - Time taken to find the best model is 89% of the provided time budget and not all estimators' hyperparameter search converged. Consider increasing the time budget.\n" + "[flaml.automl: 07-01 15:45:26] {2672} INFO - fit succeeded\n", + "[flaml.automl: 07-01 15:45:26] {2673} INFO - Time taken to find the best model: 92.18670916557312\n", + "[flaml.automl: 07-01 15:45:26] {2684} WARNING - Time taken to find the best model is 77% of the provided time budget and not all estimators' hyperparameter search converged. Consider increasing the time budget.\n" ] } ], @@ -252,9 +532,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "Best hyperparmeter config: {'n_estimators': 776, 'max_leaves': 160, 'min_child_weight': 32.57408640781376, 'learning_rate': 0.034786853332414935, 'subsample': 0.9152991332236934, 'colsample_bylevel': 0.5656764254642628, 'colsample_bytree': 0.7313266091895249, 'reg_alpha': 0.005771390107656191, 'reg_lambda': 1.49126672786588}\n", + "Best hyperparmeter config: {'n_estimators': 776, 'max_leaves': 160, 'min_child_weight': 32.57408640781372, 'learning_rate': 0.03478685333241491, 'subsample': 0.9152991332236934, 'colsample_bylevel': 0.5656764254642628, 'colsample_bytree': 0.7313266091895249, 'reg_alpha': 0.005771390107656191, 'reg_lambda': 1.4912667278658707}\n", "Best r2 on validation data: 0.834\n", - "Training duration of best run: 9.471 s\n" + "Training duration of best run: 7.944 s\n" ] } ], @@ -276,17 +556,44 @@ "outputs": [ { "data": { + "text/html": [ + "
XGBRegressor(base_score=0.5, booster='gbtree',\n",
+       "             colsample_bylevel=0.5656764254642628, colsample_bynode=1,\n",
+       "             colsample_bytree=0.7313266091895249, gamma=0, gpu_id=-1,\n",
+       "             grow_policy='lossguide', importance_type='gain',\n",
+       "             interaction_constraints='', learning_rate=0.03478685333241491,\n",
+       "             max_delta_step=0, max_depth=0, max_leaves=160,\n",
+       "             min_child_weight=32.57408640781372, missing=nan,\n",
+       "             monotone_constraints='()', n_estimators=776, n_jobs=-1,\n",
+       "             num_parallel_tree=1, random_state=0,\n",
+       "             reg_alpha=0.005771390107656191, reg_lambda=1.4912667278658707,\n",
+       "             scale_pos_weight=1, subsample=0.9152991332236934,\n",
+       "             tree_method='hist', use_label_encoder=False, validate_parameters=1,\n",
+       "             verbosity=0)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], "text/plain": [ "XGBRegressor(base_score=0.5, booster='gbtree',\n", " colsample_bylevel=0.5656764254642628, colsample_bynode=1,\n", " colsample_bytree=0.7313266091895249, gamma=0, gpu_id=-1,\n", " grow_policy='lossguide', importance_type='gain',\n", - " interaction_constraints='', learning_rate=0.034786853332414935,\n", + " interaction_constraints='', learning_rate=0.03478685333241491,\n", " max_delta_step=0, max_depth=0, max_leaves=160,\n", - " min_child_weight=32.57408640781376, missing=nan,\n", + " min_child_weight=32.57408640781372, missing=nan,\n", " monotone_constraints='()', n_estimators=776, n_jobs=-1,\n", " num_parallel_tree=1, random_state=0,\n", - " reg_alpha=0.005771390107656191, reg_lambda=1.49126672786588,\n", + " reg_alpha=0.005771390107656191, reg_lambda=1.4912667278658707,\n", " scale_pos_weight=1, subsample=0.9152991332236934,\n", " tree_method='hist', use_label_encoder=False, validate_parameters=1,\n", " verbosity=0)" @@ -318,7 +625,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdEAAAD4CAYAAACzF9zRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAeMElEQVR4nO3de3RdZZ3/8feHFFuuKdDKylTkAFZubQk0oFyKIAiKIxep1gGhoMsOl4EZXIx0xDUWHEegzA9EQSi/H1Lk5q9chEWlwIAtHaSUpJekBQpC62hFFIRwKRRIv/PHeTI9HHM5Z+ek5yT5vNY6K/s8+9nP/u7dlX7y7L1zoojAzMzMyrdZtQswMzMbqByiZmZmGTlEzczMMnKImpmZZeQQNTMzy2hYtQuw/jVq1KjI5XLVLsPMbEBpaWl5OSJG99bPITrI5XI5mpubq12GmdmAIum3pfTz5VwzM7OMHKJmZmYZOUTNzMwycoiamZll5BA1MzPLyCFqZmaWkUPUzMwsI4eomZlZRv6whUGubW07uelzq12G2V9Zc8nnq12CWZ95JmpmZpaRQ9TMzCwjh6iZmVlGDlEzM7OMHKJmZmYZOUTNzMwycogWkPRmP4x5rKTpafl4SXtlGGO+pKZK12ZmZn3jEO1nEXFvRFyS3h4PlB2iZmZWmxyiXVDeTEkrJLVJmpLaD0uzwjskPSPpFklK645JbS2SrpJ0X2o/TdKPJR0EHAvMlLRM0m6FM0xJoyStSctbSLpd0tOS7ga2KKjtKEmPS1oiaY6krTft2TEzs07+xKKufRFoBPYBRgFPSno0rdsX2Bv4A/AYcLCkZuA64NCIWC3ptuIBI+LXku4F7ouIOwBS/nblTGBdROwpaQKwJPUfBXwHODIi3pJ0AfBN4OLCjSVNA6YB1G07OtsZMDOzXnkm2rVDgNsioiMiXgIWAPundYsj4vcRsQFYBuSAPYAXImJ16vNXIVqmQ4GbASKiFWhN7Z8kfzn4MUnLgKnAzsUbR8SsiGiKiKa6Lev7WIqZmXXHM9HyrS9Y7qBv5/B9Nv4gM6KE/gIeioi/68M+zcysQjwT7dpCYIqkOkmjyc8MF/fQfxWwq6Rcej+lm35vANsUvF8DTEzLkwvaHwVOApA0DpiQ2heRv3z8sbRuK0kfL+WAzMys8hyiXbub/CXU5cAjwLci4o/ddY6It4GzgHmSWsiHZXsXXW8H/lnSUkm7AZcDZ0paSv7ea6efAFtLepr8/c6WtJ8/A6cBt0lqBR4nfynZzMyqQBFR7RoGBUlbR8Sb6Wndq4HnIuKKatc1vGFsNEy9stplmP0V/yk0q2WSWiKi19/P90y0cr6RHvZZCdSTf1rXzMwGMT9YVCFp1ln1maeZmW06nomamZll5BA1MzPLyCFqZmaWke+JDnLjx9TT7Kcgzcz6hWeiZmZmGTlEzczMMnKImpmZZeQQNTMzy8gPFg1ybWvbyU2fW+0ybBPwx+iZbXqeiZqZmWXkEDUzM8vIIWpmZpaRQ9TMzCwjh6iZmVlGDlEzM7OMHKJlkPRmL+tHSjqr4P3fSLojLTdKOibDPmdIOr/8as3MrL85RCtrJPC/IRoRf4iIyeltI1B2iJqZWe1yiGYgaWtJD0taIqlN0nFp1SXAbpKWSZopKSdphaQPARcDU9K6KcUzzNQvl5YvlPSspP8Cdi/os5ukeZJaJC2UtMemO2ozMyvmTyzK5h3ghIh4XdIoYJGke4HpwLiIaAToDMWIeFfSvwJNEfEPad2MrgaWNBH4CvmZ6zBgCdCSVs8CzoiI5yR9ArgG+HQXY0wDpgHUbTu6AodrZmZdcYhmI+DfJR0KbADGADtWaOxJwN0RsQ4ghTOStgYOAuZI6uw7vKsBImIW+cBleMPYqFBdZmZWxCGazcnAaGBiRLwnaQ0woswx3ueDl9N7234z4LXOWa6ZmVWf74lmUw/8KQXo4cDOqf0NYJtutiletwbYD0DSfsAuqf1R4HhJW0jaBvgCQES8DqyW9KW0jSTtU7lDMjOzcjlEs7kFaJLUBpwKPAMQEa8Aj6WHhGYWbfMrYK/OB4uAO4HtJa0E/gF4No2xBPg5sBy4H3iyYIyTga9LWg6sBI7DzMyqRhG+ZTaYDW8YGw1Tr6x2GbYJ+E+hmVWOpJaIaOqtn2eiZmZmGTlEzczMMnKImpmZZeQQNTMzy8i/JzrIjR9TT7MfODEz6xeeiZqZmWXkEDUzM8vIIWpmZpaRQ9TMzCwjP1g0yLWtbSc3fW5V9u1P0DGzwc4zUTMzs4wcomZmZhk5RM3MzDJyiJqZmWXkEDUzM8vIIWpmZpbRkAhRSTlJK6qw3zfL7D9D0vldtFelfjMz69mQCFEzM7P+MJRCtE7S9ZJWSnpQ0haSGiUtktQq6W5J2wFImi+pKS2PkrQmLe8tabGkZWmbsan9qwXt10mq69yppO9LWp72s2Nqy0l6JI3xsKSPFhcraWLabjlwdkF7lzWYmdmmN5RCdCxwdUTsDbwGnAjcBFwQEROANuC7vYxxBvDDiGgEmoDfS9oTmAIcnNo7gJNT/62ARRGxD/Ao8I3U/iNgdtrvLcBVXezrp8A5adseayjeUNI0Sc2SmjvWtfdySGZmltVQCtHVEbEsLbcAuwEjI2JBapsNHNrLGI8D35Z0AbBzRLwNHAFMBJ6UtCy93zX1fxe4r2CfubR8IHBrWv4ZcEjhTiSNTLU9WtCnpxo+ICJmRURTRDTVbVnfyyGZmVlWQylE1xcsdwAje+j7PhvPzYjOxoi4FTgWeBv4paRPAyI/q2xMr90jYkba5L2IiIJ99vmzirupwczMqmAohWixduBVSZPS+1OAzlnpGvKzS4DJnRtI2hV4ISKuAu4BJgAPA5MlfTj12V7Szr3s+9fAV9LyycDCwpUR8RrwmqRDCvr0VIOZmVXBUA5RgKnATEmtQCNwcWq/HDhT0lJgVEH/LwMr0mXbccBNEfEU8B3gwTTOQ0BDL/s9Bzg99T8F+Mcu+pwOXJ32pZ5qKOlIzcys4rTxaqMNRsMbxkbD1Cursm//KTQzG6gktUREU2/9hvpM1MzMLDOHqJmZWUYOUTMzs4wcomZmZhn1+fcWrbaNH1NPsx/wMTPrF56JmpmZZeQQNTMzy8ghamZmlpFD1MzMLCM/WDTIta1tJzd9brXLKIs/6cjMBgrPRM3MzDJyiJqZmWXkEDUzM8vIIWpmZpaRQ9TMzCwjh6iZmVlGDtF+ICknaUUJfU4qeN8k6ar+r87MzCrFIVo9OeB/QzQimiPi3OqVY2Zm5RqSIZpmgc9IukXS05LukLSlpCMkLZXUJukGScNT/zWSLkvtiyV9LLXfKGlywbhvdrOvhZKWpNdBadUlwCRJyySdJ+kwSfelbbaX9AtJrZIWSZqQ2mekuuZLekGSQ9fMrIqGZIgmuwPXRMSewOvAN4EbgSkRMZ78pzmdWdC/PbX/GLiyjP38CfhMROwHTAE6L9lOBxZGRGNEXFG0zUXA0oiYAHwbuKlg3R7A0cABwHclbV68Q0nTJDVLau5Y115GqWZmVo6hHKK/i4jH0vLNwBHA6oh4NrXNBg4t6H9bwdcDy9jP5sD1ktqAOcBeJWxzCPAzgIh4BNhB0rZp3dyIWB8RL5MP6B2LN46IWRHRFBFNdVvWl1GqmZmVYyh/dm4UvX8N2KHE/p3L75N+EJG0GfChLrY7D3gJ2Cf1fSdDrYXWFyx3MLT/Dc3Mqmooz0Q/KqlzRnkS0AzkOu93AqcACwr6Tyn4+nhaXgNMTMvHkp91FqsHXoyIDWnMutT+BrBNN7UtBE4GkHQY8HJEvF7KQZmZ2aYzlGcxq4CzJd0APAWcCywC5kgaBjwJXFvQfztJreRngn+X2q4H7pG0HJgHvNXFfq4B7pR0alGfVqAjbXsjsLRgmxnADWl/64CpfTtUMzPrD4oovqo5+EnKAfdFxLgS+68BmtJ9yAFleMPYaJh6ZbXLKIv/FJqZVZukloho6q3fUL6ca2Zm1idD8nJuRKwBSpqFpv65fivGzMwGLM9EzczMMnKImpmZZeQQNTMzy2hI3hMdSsaPqafZT7uamfULz0TNzMwycoiamZll5BA1MzPLyCFqZmaWkR8sGuTa1raTmz63qjX4Y/zMbLDyTNTMzCwjh6iZmVlGDlEzM7OMHKJmZmYZOUTNzMwycoiamZllVHMhKmmkpLN66ZOTdFIJY+Ukrehh/WmSfpylzkpsb2ZmA1vNhSgwEugxRIEc0GuIVosk//6tmdkQUIshegmwm6Rlkmam1wpJbZKmFPSZlPqcl2acCyUtSa+DytjfTpLmS3pO0nc7GyV9VdLitI/rJNWl9tMlPStpMXBwQf8bJV0r6QngMkmNkhZJapV0t6TtUr/u2udLukJSs6SnJe0v6a5U17+lPltJmitpeTonUzAzs6qpxRCdDjwfEY3AIqAR2Ac4EpgpqSH1WRgRjRFxBfAn4DMRsR8wBbiqjP0dAJwITAC+JKlJ0p5pnINTHR3AyWnfF5EPz0OAvYrG+ghwUER8E7gJuCAiJgBtQGdAd9cO8G5ENAHXAvcAZwPjgNMk7QB8FvhDROwTEeOAeV0dkKRpKYybO9a1l3EqzMysHLV+2fEQ4LaI6ABekrQA2B94vajf5sCPJTWSD7yPl7GPhyLiFQBJd6V9vg9MBJ6UBLAF+aD+BDA/Iv6c+v+8aF9zIqJDUj0wMiIWpPbZwJzu2gu2vzd9bQNWRsSLaT8vADul9v+QdClwX0Qs7OqAImIWMAtgeMPYKONcmJlZGWo9REt1HvAS+RnrZsA7ZWxbHDIBCJgdEf9SuELS8b2M9VYZ++3K+vR1Q8Fy5/thEfGspP2AY4B/k/RwRFzcx32amVlGtXg59w1gm7S8EJgiqU7SaOBQYHFRH4B64MWI2ACcAtSVsb/PSNpe0hbA8cBjwMPAZEkfBkjrdwaeAD4laQdJmwNf6mrAiGgHXpU0KTWdAizorr3UQiX9DbAuIm4GZgL7lXGcZmZWYTU3E42IVyQ9ln415X6gFVhOfob4rYj4o6RXgA5Jy4EbgWuAOyWdSv4+YTkzwsXAneTvZ94cEc0Akr4DPChpM+A94OyIWCRpBvA48BqwrIdxpwLXStoSeAE4vZf2Uownf194Q6rpzDK2NTOzClOEb5kNZsMbxkbD1CurWoP/FJqZDTSSWtKDnj2qxcu5ZmZmA0LNXc7tD5KOBi4tal4dESdUox4zMxschkSIRsQDwAPVrsPMzAYXX841MzPLaEjMRIey8WPqafaDPWZm/cIzUTMzs4wcomZmZhk5RM3MzDJyiJqZmWXkB4sGuba17eSmz612GWXzpxyZ2UDgmaiZmVlGDlEzM7OMHKJmZmYZOUTNzMwycoiamZll5BA1MzPLyCFqZmaW0aAOUUkjJZ3VS5+cpJNKGCsnaUXlqjMzs4FuUIcoMBLoMUSBHNBriJZDkj/EwsxsCBjsIXoJsJukZZJmptcKSW2SphT0mZT6nJdmnAslLUmvg0rZkaTTJN0r6RHgYUnbS/qFpFZJiyRNSP26a58haXba928lfVHSZanWeZI2T/0ukfRU2v7ybmqZJqlZUnPHuva+nkMzM+vGYJ8xTQfGRUSjpBOBM4B9gFHAk5IeTX3Oj4i/BZC0JfCZiHhH0ljgNqCpxP3tB0yIiL9I+hGwNCKOl/Rp4CagEbiom3aA3YDDgb2Ax4ETI+Jbku4GPi9pIXACsEdEhKSRXRUREbOAWQDDG8ZGibWbmVmZBvtMtNAhwG0R0RERLwELgP276Lc5cL2kNmAO+UAr1UMR8ZeC/f0MICIeAXaQtG0P7QD3R8R7QBtQB8xL7W3kLzu3A+8A/0/SF4F1ZdRmZmYVNpRCtFTnAS+Rn7E2AR8qY9u3+rjv9QARsQF4LyI6Z5EbgGER8T5wAHAH8LdsDFkzM6uCwR6ibwDbpOWFwBRJdZJGA4cCi4v6ANQDL6YgO4X8jDCLhcDJAJIOA16OiNd7aO+VpK2B+oj4Jfmw3ydjbWZmVgGD+p5oRLwi6bH0qyn3A63AciCAb0XEHyW9AnRIWg7cCFwD3CnpVPIzvayzyxnADZJayV92ndpLeym2Ae6RNAIQ8M2MtZmZWQVo4xVDG4yGN4yNhqlXVruMsvnviZpZNUlqiYheHyod7JdzzczM+s2gvpzbHyQdDVxa1Lw6Ik6oRj1mZlY9DtEyRcQDwAPVrsPMzKrPITrIjR9TT7PvL5qZ9QvfEzUzM8vIIWpmZpaRQ9TMzCwjh6iZmVlGfrBokGtb205u+txql1Fx/jAGM6sFnomamZll5BA1MzPLyCFqZmaWkUPUzMwsI4eomZlZRg5RMzOzjByiZmZmGfUaopJyklb0VwGSft1fY/dV4bFLapJ0VbVrMjOz2lH1D1uIiIOqXUMpIqIZaK52HWZmVjtKvZxbJ+l6SSslPShpC0mNkhZJapV0t6TtACTNl9SUlkdJWpOW95a0WNKytM3Y1P5m+npY2vYOSc9IukWS0rpjUluLpKsk3dddoZJmSJotaaGk30r6oqTLJLVJmidp89RvoqQFacwHJDUUtC+XtBw4u2Dcwzr3K+kASY9LWirp15J2T+2nSbor7ec5SZf1dFIl/URSczqvFxW0d3m8kraSdEM6j0slHdfNuNPSuM0d69p7KsHMzPqg1BAdC1wdEXsDrwEnAjcBF0TEBKAN+G4vY5wB/DAiGoEm4Pdd9NkX+CdgL2BX4GBJI4DrgM9FxERgdAn17gZ8GjgWuBn4VUSMB94GPp+C9EfA5DTmDcD307Y/Bc6JiH16GP8ZYFJE7Av8K/DvBesagSnAeGCKpJ16GOfCiGgCJgCfkjShl+O9EHgkIg4ADgdmStqqeNCImBURTRHRVLdlfQ+7NzOzvij1cu7qiFiWllvIh9TIiFiQ2mYDc3oZ43HgQkkfAe6KiOe66LM4In4PIGkZkAPeBF6IiNWpz23AtF72dX9EvCepDagD5qX2tjTm7sA44KE02a0DXpQ0Mh3Xo6n/z4DPdTF+PTA7zaYD2Lxg3cMR0Z6O4SlgZ+B33dT5ZUnTyP87NJD/4WGzHo73KOBYSeen9yOAjwJP93g2zMysX5QaousLljuAkT30fZ+NM9wRnY0RcaukJ4DPA7+U9PcR8Ugv+8l6z3Z92ucGSe9FRKT2DWlMASsj4sDCjVKIluJ75Ge3J0jKAfOL9510ewySdgHOB/aPiFcl3UjB+eqGgBMjYlWJdZqZWT/K+isu7cCrkial96cAnbPSNcDEtDy5cwNJu5KfYV0F3EP+EmYpVgG7prCC/KXSvloFjJZ0YKptc0l7R8RrwGuSDkn9Tu5m+3pgbVo+LWMN2wJvAe2SdmTjjLen430AOKfgXvG+GfdtZmYV0JffE51K/p5cK/n7gBen9suBMyUtBUYV9P8ysCJdph1H/p5qryLibeAsYJ6kFuAN8iGeWUS8Sz7gL00PEC0DOp8SPh24OtWpboa4DPhBOsZMs+WIWA4sJX9/9VbgsdTe0/F+j/yl41ZJK9N7MzOrEm280lm7JG0dEW+mGdjVwHMRcUW16+ovlTze4Q1jo2HqlRWtrxb474maWX+S1JIe/OzRQPnEom+kmeFK8pdSr6tuOf1uqB2vmdmAVPUPWyhFmoV9YCYm6XTgH4u6PhYRZ1Nj0gNVw4uaT4mItq76d3W8ZmZWewZEiHYlIn5K/nc6a15EfKLaNZiZWeUNlMu5ZmZmNWfAzkStNOPH1NPsh3DMzPqFZ6JmZmYZOUTNzMwycoiamZll5BA1MzPLyA8WDXJta9vJTZ9b7TLMzDapTfWpZp6JmpmZZeQQNTMzy8ghamZmlpFD1MzMLCOHqJmZWUYOUTMzs4wcomZmZhkN2hCVNF9SU1r+paSRFRz7DEmnVmo8MzMbmIbEhy1ExDEVHu/aSo5nZmYDU03NRCXlJD0j6UZJz0q6RdKRkh6T9JykAyRtJekGSYslLZV0XNp2C0m3S3pa0t3AFgXjrpE0Ki3/QlKLpJWSphX0eVPS9yUtl7RI0o491DlD0vlpeb6kS1M9z0qalNrrJF0uaYWkVknnpPYjUt1t6TiGF9T4A0nLJDVL2k/SA5Kel3RGwb7/WdKTacyLuqlvWhqjuWNdex/+RczMrCc1FaLJx4D/APZIr5OAQ4DzgW8DFwKPRMQBwOHATElbAWcC6yJiT+C7wMRuxv9aREwEmoBzJe2Q2rcCFkXEPsCjwDfKqHlYquef0r4BpgE5oDEiJgC3SBoB3AhMiYjx5K8EnFkwzn9HRCOwMPWbDHwSuAhA0lHAWOAAoBGYKOnQ4mIiYlZENEVEU92W9WUchpmZlaMWQ3R1RLRFxAZgJfBwRATQRj6UjgKmS1oGzAdGAB8FDgVuBoiIVqC1m/HPlbQcWATsRD6UAN4F7kvLLWlfpbqri+2OBK6LiPdTTX8Bdk/H92zqMzvV3ene9LUNeCIi3oiIPwPr0z3do9JrKbCE/A8ZYzEzs6qoxXui6wuWNxS830C+3g7gxIhYVbiRpF4HlnQY+XA7MCLWSZpPPoQB3kthTdpHOeems8Zyt+tunMLj7nw/DBDwg4i4rg/7MDOzCqnFmWhvHgDOUUpNSfum9kfJX/pF0jhgQhfb1gOvpgDdg/yl0v7yEPD3koalmrYHVgE5SR9LfU4BFpQx5gPA1yRtncYcI+nDFazZzMzKMBBD9HvA5kCrpJXpPcBPgK0lPQ1cTP7SarF5wLDU5xLyl3T7y/8F/jvVuRw4KSLeAU4H5khqIz/DLPlJ34h4ELgVeDxtfwewTcUrNzOzkmjjFUwbjIY3jI2GqVdWuwwzs02qr39PVFJLRDT11m8gzkTNzMxqQi0+WFQzJF0IfKmoeU5EfL8a9ZiZWW1xiPYghaUD08zMuuQQHeTGj6mnuY/3BszMrGu+J2pmZpaRQ9TMzCwjh6iZmVlGDlEzM7OMHKJmZmYZOUTNzMwycoiamZll5BA1MzPLyCFqZmaWkf+KyyAn6Q3yf8e0lo0CXq52Eb1wjZXhGivDNVZGTzXuHBGjexvAH/s3+K0q5c/5VJOkZtfYd66xMlxjZQyVGn0518zMLCOHqJmZWUYO0cFvVrULKIFrrAzXWBmusTKGRI1+sMjMzCwjz0TNzMwycoiamZll5BAdwCR9VtIqSb+RNL2L9cMl/Tytf0JSrmDdv6T2VZKOrqX6JOUkvS1pWXpd2x/1lVjjoZKWSHpf0uSidVMlPZdeU2u0xo6C83hvFWv8pqSnJLVKeljSzgXrauU89lRjrZzHMyS1pTr+S9JeBev6/Xu6LzXW0vd1Qb8TJYWkpoK28s5jRPg1AF9AHfA8sCvwIWA5sFdRn7OAa9PyV4Cfp+W9Uv/hwC5pnLoaqi8HrKiRc5gDJgA3AZML2rcHXkhft0vL29VSjWndmzVyHg8HtkzLZxb8W9fSeeyyxho7j9sWLB8LzEvL/f49XYEaa+b7OvXbBngUWAQ0ZT2PnokOXAcAv4mIFyLiXeB24LiiPscBs9PyHcARkpTab4+I9RGxGvhNGq9W6ttUeq0xItZERCuwoWjbo4GHIuIvEfEq8BDw2RqrcVMppcZfRcS69HYR8JG0XEvnsbsaN5VSany94O1WQOeToZvie7qvNW4qpfzfA/A94FLgnYK2ss+jQ3TgGgP8ruD971Nbl30i4n2gHdihxG2rWR/ALpKWSlogaVKFayunxv7Ythx93c8ISc2SFkk6vqKVbVRujV8H7s+4bVZ9qRFq6DxKOlvS88BlwLnlbFvlGqFGvq8l7QfsFBFzy922mD/2z2rRi8BHI+IVSROBX0jau+gnXCvNzhGxVtKuwCOS2iLi+WoVI+mrQBPwqWrV0JtuaqyZ8xgRVwNXSzoJ+A7Qb/eRs+qmxpr4vpa0GfB/gNMqMZ5nogPXWmCngvcfSW1d9pE0DKgHXilx26rVly6lvAIQES3k70t8vML1lVpjf2xbjj7tJyLWpq8vAPOBfStZXFJSjZKOBC4Ejo2I9eVsW+Uaa+o8FrgdOD7jtlllrrGGvq+3AcYB8yWtAT4J3JseLir/PPb3TV6/+u3m+TDyD2Hswsab53sX9TmbDz648//T8t588Ob5C1T+waK+1De6sx7yDwesBbavxjks6Hsjf/1g0WryD8Nsl5ZrrcbtgOFpeRTwHF08YLGJ/q33Jf+f5tii9po5jz3UWEvncWzB8heA5rTc79/TFaix5r6vU//5bHywqOzzWNHi/dq0L+AY4Nn0jX9haruY/E/RACOAOeRvji8Gdi3Y9sK03Srgc7VUH3AisBJYBiwBvlDFc7g/+fsib5Gfxa8s2PZrqfbfAKfXWo3AQUBb+k+hDfh6FWv8T+Cl9G+6DLi3Bs9jlzXW2Hn8YcH3xq8oCIdN8T3dlxpr6fu6qO98UohmOY/+2D8zM7OMfE/UzMwsI4eomZlZRg5RMzOzjByiZmZmGTlEzczMMnKImpmZZeQQNTMzy+h/AGO8zPtm/jL6AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdEAAAD4CAYAAACzF9zRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAeMElEQVR4nO3de3RdZZ3/8feHFFuuKdDKylTkAFZubQk0oFyKIAiKIxep1gGhoMsOl4EZXIx0xDUWHEegzA9EQSi/H1Lk5q9chEWlwIAtHaSUpJekBQpC62hFFIRwKRRIv/PHeTI9HHM5Z+ek5yT5vNY6K/s8+9nP/u7dlX7y7L1zoojAzMzMyrdZtQswMzMbqByiZmZmGTlEzczMMnKImpmZZeQQNTMzy2hYtQuw/jVq1KjI5XLVLsPMbEBpaWl5OSJG99bPITrI5XI5mpubq12GmdmAIum3pfTz5VwzM7OMHKJmZmYZOUTNzMwycoiamZll5BA1MzPLyCFqZmaWkUPUzMwsI4eomZlZRv6whUGubW07uelzq12G2V9Zc8nnq12CWZ95JmpmZpaRQ9TMzCwjh6iZmVlGDlEzM7OMHKJmZmYZOUTNzMwycogWkPRmP4x5rKTpafl4SXtlGGO+pKZK12ZmZn3jEO1nEXFvRFyS3h4PlB2iZmZWmxyiXVDeTEkrJLVJmpLaD0uzwjskPSPpFklK645JbS2SrpJ0X2o/TdKPJR0EHAvMlLRM0m6FM0xJoyStSctbSLpd0tOS7ga2KKjtKEmPS1oiaY6krTft2TEzs07+xKKufRFoBPYBRgFPSno0rdsX2Bv4A/AYcLCkZuA64NCIWC3ptuIBI+LXku4F7ouIOwBS/nblTGBdROwpaQKwJPUfBXwHODIi3pJ0AfBN4OLCjSVNA6YB1G07OtsZMDOzXnkm2rVDgNsioiMiXgIWAPundYsj4vcRsQFYBuSAPYAXImJ16vNXIVqmQ4GbASKiFWhN7Z8kfzn4MUnLgKnAzsUbR8SsiGiKiKa6Lev7WIqZmXXHM9HyrS9Y7qBv5/B9Nv4gM6KE/gIeioi/68M+zcysQjwT7dpCYIqkOkmjyc8MF/fQfxWwq6Rcej+lm35vANsUvF8DTEzLkwvaHwVOApA0DpiQ2heRv3z8sbRuK0kfL+WAzMys8hyiXbub/CXU5cAjwLci4o/ddY6It4GzgHmSWsiHZXsXXW8H/lnSUkm7AZcDZ0paSv7ea6efAFtLepr8/c6WtJ8/A6cBt0lqBR4nfynZzMyqQBFR7RoGBUlbR8Sb6Wndq4HnIuKKatc1vGFsNEy9stplmP0V/yk0q2WSWiKi19/P90y0cr6RHvZZCdSTf1rXzMwGMT9YVCFp1ln1maeZmW06nomamZll5BA1MzPLyCFqZmaWke+JDnLjx9TT7Kcgzcz6hWeiZmZmGTlEzczMMnKImpmZZeQQNTMzy8gPFg1ybWvbyU2fW+0ybBPwx+iZbXqeiZqZmWXkEDUzM8vIIWpmZpaRQ9TMzCwjh6iZmVlGDlEzM7OMHKJlkPRmL+tHSjqr4P3fSLojLTdKOibDPmdIOr/8as3MrL85RCtrJPC/IRoRf4iIyeltI1B2iJqZWe1yiGYgaWtJD0taIqlN0nFp1SXAbpKWSZopKSdphaQPARcDU9K6KcUzzNQvl5YvlPSspP8Cdi/os5ukeZJaJC2UtMemO2ozMyvmTyzK5h3ghIh4XdIoYJGke4HpwLiIaAToDMWIeFfSvwJNEfEPad2MrgaWNBH4CvmZ6zBgCdCSVs8CzoiI5yR9ArgG+HQXY0wDpgHUbTu6AodrZmZdcYhmI+DfJR0KbADGADtWaOxJwN0RsQ4ghTOStgYOAuZI6uw7vKsBImIW+cBleMPYqFBdZmZWxCGazcnAaGBiRLwnaQ0woswx3ueDl9N7234z4LXOWa6ZmVWf74lmUw/8KQXo4cDOqf0NYJtutiletwbYD0DSfsAuqf1R4HhJW0jaBvgCQES8DqyW9KW0jSTtU7lDMjOzcjlEs7kFaJLUBpwKPAMQEa8Aj6WHhGYWbfMrYK/OB4uAO4HtJa0E/gF4No2xBPg5sBy4H3iyYIyTga9LWg6sBI7DzMyqRhG+ZTaYDW8YGw1Tr6x2GbYJ+E+hmVWOpJaIaOqtn2eiZmZmGTlEzczMMnKImpmZZeQQNTMzy8i/JzrIjR9TT7MfODEz6xeeiZqZmWXkEDUzM8vIIWpmZpaRQ9TMzCwjP1g0yLWtbSc3fW5V9u1P0DGzwc4zUTMzs4wcomZmZhk5RM3MzDJyiJqZmWXkEDUzM8vIIWpmZpbRkAhRSTlJK6qw3zfL7D9D0vldtFelfjMz69mQCFEzM7P+MJRCtE7S9ZJWSnpQ0haSGiUtktQq6W5J2wFImi+pKS2PkrQmLe8tabGkZWmbsan9qwXt10mq69yppO9LWp72s2Nqy0l6JI3xsKSPFhcraWLabjlwdkF7lzWYmdmmN5RCdCxwdUTsDbwGnAjcBFwQEROANuC7vYxxBvDDiGgEmoDfS9oTmAIcnNo7gJNT/62ARRGxD/Ao8I3U/iNgdtrvLcBVXezrp8A5adseayjeUNI0Sc2SmjvWtfdySGZmltVQCtHVEbEsLbcAuwEjI2JBapsNHNrLGI8D35Z0AbBzRLwNHAFMBJ6UtCy93zX1fxe4r2CfubR8IHBrWv4ZcEjhTiSNTLU9WtCnpxo+ICJmRURTRDTVbVnfyyGZmVlWQylE1xcsdwAje+j7PhvPzYjOxoi4FTgWeBv4paRPAyI/q2xMr90jYkba5L2IiIJ99vmzirupwczMqmAohWixduBVSZPS+1OAzlnpGvKzS4DJnRtI2hV4ISKuAu4BJgAPA5MlfTj12V7Szr3s+9fAV9LyycDCwpUR8RrwmqRDCvr0VIOZmVXBUA5RgKnATEmtQCNwcWq/HDhT0lJgVEH/LwMr0mXbccBNEfEU8B3gwTTOQ0BDL/s9Bzg99T8F+Mcu+pwOXJ32pZ5qKOlIzcys4rTxaqMNRsMbxkbD1Cursm//KTQzG6gktUREU2/9hvpM1MzMLDOHqJmZWUYOUTMzs4wcomZmZhn1+fcWrbaNH1NPsx/wMTPrF56JmpmZZeQQNTMzy8ghamZmlpFD1MzMLCM/WDTIta1tJzd9brXLKIs/6cjMBgrPRM3MzDJyiJqZmWXkEDUzM8vIIWpmZpaRQ9TMzCwjh6iZmVlGDtF+ICknaUUJfU4qeN8k6ar+r87MzCrFIVo9OeB/QzQimiPi3OqVY2Zm5RqSIZpmgc9IukXS05LukLSlpCMkLZXUJukGScNT/zWSLkvtiyV9LLXfKGlywbhvdrOvhZKWpNdBadUlwCRJyySdJ+kwSfelbbaX9AtJrZIWSZqQ2mekuuZLekGSQ9fMrIqGZIgmuwPXRMSewOvAN4EbgSkRMZ78pzmdWdC/PbX/GLiyjP38CfhMROwHTAE6L9lOBxZGRGNEXFG0zUXA0oiYAHwbuKlg3R7A0cABwHclbV68Q0nTJDVLau5Y115GqWZmVo6hHKK/i4jH0vLNwBHA6oh4NrXNBg4t6H9bwdcDy9jP5sD1ktqAOcBeJWxzCPAzgIh4BNhB0rZp3dyIWB8RL5MP6B2LN46IWRHRFBFNdVvWl1GqmZmVYyh/dm4UvX8N2KHE/p3L75N+EJG0GfChLrY7D3gJ2Cf1fSdDrYXWFyx3MLT/Dc3Mqmooz0Q/KqlzRnkS0AzkOu93AqcACwr6Tyn4+nhaXgNMTMvHkp91FqsHXoyIDWnMutT+BrBNN7UtBE4GkHQY8HJEvF7KQZmZ2aYzlGcxq4CzJd0APAWcCywC5kgaBjwJXFvQfztJreRngn+X2q4H7pG0HJgHvNXFfq4B7pR0alGfVqAjbXsjsLRgmxnADWl/64CpfTtUMzPrD4oovqo5+EnKAfdFxLgS+68BmtJ9yAFleMPYaJh6ZbXLKIv/FJqZVZukloho6q3fUL6ca2Zm1idD8nJuRKwBSpqFpv65fivGzMwGLM9EzczMMnKImpmZZeQQNTMzy2hI3hMdSsaPqafZT7uamfULz0TNzMwycoiamZll5BA1MzPLyCFqZmaWkR8sGuTa1raTmz63qjX4Y/zMbLDyTNTMzCwjh6iZmVlGDlEzM7OMHKJmZmYZOUTNzMwycoiamZllVHMhKmmkpLN66ZOTdFIJY+Ukrehh/WmSfpylzkpsb2ZmA1vNhSgwEugxRIEc0GuIVosk//6tmdkQUIshegmwm6Rlkmam1wpJbZKmFPSZlPqcl2acCyUtSa+DytjfTpLmS3pO0nc7GyV9VdLitI/rJNWl9tMlPStpMXBwQf8bJV0r6QngMkmNkhZJapV0t6TtUr/u2udLukJSs6SnJe0v6a5U17+lPltJmitpeTonUzAzs6qpxRCdDjwfEY3AIqAR2Ac4EpgpqSH1WRgRjRFxBfAn4DMRsR8wBbiqjP0dAJwITAC+JKlJ0p5pnINTHR3AyWnfF5EPz0OAvYrG+ghwUER8E7gJuCAiJgBtQGdAd9cO8G5ENAHXAvcAZwPjgNMk7QB8FvhDROwTEeOAeV0dkKRpKYybO9a1l3EqzMysHLV+2fEQ4LaI6ABekrQA2B94vajf5sCPJTWSD7yPl7GPhyLiFQBJd6V9vg9MBJ6UBLAF+aD+BDA/Iv6c+v+8aF9zIqJDUj0wMiIWpPbZwJzu2gu2vzd9bQNWRsSLaT8vADul9v+QdClwX0Qs7OqAImIWMAtgeMPYKONcmJlZGWo9REt1HvAS+RnrZsA7ZWxbHDIBCJgdEf9SuELS8b2M9VYZ++3K+vR1Q8Fy5/thEfGspP2AY4B/k/RwRFzcx32amVlGtXg59w1gm7S8EJgiqU7SaOBQYHFRH4B64MWI2ACcAtSVsb/PSNpe0hbA8cBjwMPAZEkfBkjrdwaeAD4laQdJmwNf6mrAiGgHXpU0KTWdAizorr3UQiX9DbAuIm4GZgL7lXGcZmZWYTU3E42IVyQ9ln415X6gFVhOfob4rYj4o6RXgA5Jy4EbgWuAOyWdSv4+YTkzwsXAneTvZ94cEc0Akr4DPChpM+A94OyIWCRpBvA48BqwrIdxpwLXStoSeAE4vZf2Uownf194Q6rpzDK2NTOzClOEb5kNZsMbxkbD1CurWoP/FJqZDTSSWtKDnj2qxcu5ZmZmA0LNXc7tD5KOBi4tal4dESdUox4zMxschkSIRsQDwAPVrsPMzAYXX841MzPLaEjMRIey8WPqafaDPWZm/cIzUTMzs4wcomZmZhk5RM3MzDJyiJqZmWXkB4sGuba17eSmz612GWXzpxyZ2UDgmaiZmVlGDlEzM7OMHKJmZmYZOUTNzMwycoiamZll5BA1MzPLyCFqZmaW0aAOUUkjJZ3VS5+cpJNKGCsnaUXlqjMzs4FuUIcoMBLoMUSBHNBriJZDkj/EwsxsCBjsIXoJsJukZZJmptcKSW2SphT0mZT6nJdmnAslLUmvg0rZkaTTJN0r6RHgYUnbS/qFpFZJiyRNSP26a58haXba928lfVHSZanWeZI2T/0ukfRU2v7ybmqZJqlZUnPHuva+nkMzM+vGYJ8xTQfGRUSjpBOBM4B9gFHAk5IeTX3Oj4i/BZC0JfCZiHhH0ljgNqCpxP3tB0yIiL9I+hGwNCKOl/Rp4CagEbiom3aA3YDDgb2Ax4ETI+Jbku4GPi9pIXACsEdEhKSRXRUREbOAWQDDG8ZGibWbmVmZBvtMtNAhwG0R0RERLwELgP276Lc5cL2kNmAO+UAr1UMR8ZeC/f0MICIeAXaQtG0P7QD3R8R7QBtQB8xL7W3kLzu3A+8A/0/SF4F1ZdRmZmYVNpRCtFTnAS+Rn7E2AR8qY9u3+rjv9QARsQF4LyI6Z5EbgGER8T5wAHAH8LdsDFkzM6uCwR6ibwDbpOWFwBRJdZJGA4cCi4v6ANQDL6YgO4X8jDCLhcDJAJIOA16OiNd7aO+VpK2B+oj4Jfmw3ydjbWZmVgGD+p5oRLwi6bH0qyn3A63AciCAb0XEHyW9AnRIWg7cCFwD3CnpVPIzvayzyxnADZJayV92ndpLeym2Ae6RNAIQ8M2MtZmZWQVo4xVDG4yGN4yNhqlXVruMsvnviZpZNUlqiYheHyod7JdzzczM+s2gvpzbHyQdDVxa1Lw6Ik6oRj1mZlY9DtEyRcQDwAPVrsPMzKrPITrIjR9TT7PvL5qZ9QvfEzUzM8vIIWpmZpaRQ9TMzCwjh6iZmVlGfrBokGtb205u+txql1Fx/jAGM6sFnomamZll5BA1MzPLyCFqZmaWkUPUzMwsI4eomZlZRg5RMzOzjByiZmZmGfUaopJyklb0VwGSft1fY/dV4bFLapJ0VbVrMjOz2lH1D1uIiIOqXUMpIqIZaK52HWZmVjtKvZxbJ+l6SSslPShpC0mNkhZJapV0t6TtACTNl9SUlkdJWpOW95a0WNKytM3Y1P5m+npY2vYOSc9IukWS0rpjUluLpKsk3dddoZJmSJotaaGk30r6oqTLJLVJmidp89RvoqQFacwHJDUUtC+XtBw4u2Dcwzr3K+kASY9LWirp15J2T+2nSbor7ec5SZf1dFIl/URSczqvFxW0d3m8kraSdEM6j0slHdfNuNPSuM0d69p7KsHMzPqg1BAdC1wdEXsDrwEnAjcBF0TEBKAN+G4vY5wB/DAiGoEm4Pdd9NkX+CdgL2BX4GBJI4DrgM9FxERgdAn17gZ8GjgWuBn4VUSMB94GPp+C9EfA5DTmDcD307Y/Bc6JiH16GP8ZYFJE7Av8K/DvBesagSnAeGCKpJ16GOfCiGgCJgCfkjShl+O9EHgkIg4ADgdmStqqeNCImBURTRHRVLdlfQ+7NzOzvij1cu7qiFiWllvIh9TIiFiQ2mYDc3oZ43HgQkkfAe6KiOe66LM4In4PIGkZkAPeBF6IiNWpz23AtF72dX9EvCepDagD5qX2tjTm7sA44KE02a0DXpQ0Mh3Xo6n/z4DPdTF+PTA7zaYD2Lxg3cMR0Z6O4SlgZ+B33dT5ZUnTyP87NJD/4WGzHo73KOBYSeen9yOAjwJP93g2zMysX5QaousLljuAkT30fZ+NM9wRnY0RcaukJ4DPA7+U9PcR8Ugv+8l6z3Z92ucGSe9FRKT2DWlMASsj4sDCjVKIluJ75Ge3J0jKAfOL9510ewySdgHOB/aPiFcl3UjB+eqGgBMjYlWJdZqZWT/K+isu7cCrkial96cAnbPSNcDEtDy5cwNJu5KfYV0F3EP+EmYpVgG7prCC/KXSvloFjJZ0YKptc0l7R8RrwGuSDkn9Tu5m+3pgbVo+LWMN2wJvAe2SdmTjjLen430AOKfgXvG+GfdtZmYV0JffE51K/p5cK/n7gBen9suBMyUtBUYV9P8ysCJdph1H/p5qryLibeAsYJ6kFuAN8iGeWUS8Sz7gL00PEC0DOp8SPh24OtWpboa4DPhBOsZMs+WIWA4sJX9/9VbgsdTe0/F+j/yl41ZJK9N7MzOrEm280lm7JG0dEW+mGdjVwHMRcUW16+ovlTze4Q1jo2HqlRWtrxb474maWX+S1JIe/OzRQPnEom+kmeFK8pdSr6tuOf1uqB2vmdmAVPUPWyhFmoV9YCYm6XTgH4u6PhYRZ1Nj0gNVw4uaT4mItq76d3W8ZmZWewZEiHYlIn5K/nc6a15EfKLaNZiZWeUNlMu5ZmZmNWfAzkStNOPH1NPsh3DMzPqFZ6JmZmYZOUTNzMwycoiamZll5BA1MzPLyA8WDXJta9vJTZ9b7TLMzDapTfWpZp6JmpmZZeQQNTMzy8ghamZmlpFD1MzMLCOHqJmZWUYOUTMzs4wcomZmZhkN2hCVNF9SU1r+paSRFRz7DEmnVmo8MzMbmIbEhy1ExDEVHu/aSo5nZmYDU03NRCXlJD0j6UZJz0q6RdKRkh6T9JykAyRtJekGSYslLZV0XNp2C0m3S3pa0t3AFgXjrpE0Ki3/QlKLpJWSphX0eVPS9yUtl7RI0o491DlD0vlpeb6kS1M9z0qalNrrJF0uaYWkVknnpPYjUt1t6TiGF9T4A0nLJDVL2k/SA5Kel3RGwb7/WdKTacyLuqlvWhqjuWNdex/+RczMrCc1FaLJx4D/APZIr5OAQ4DzgW8DFwKPRMQBwOHATElbAWcC6yJiT+C7wMRuxv9aREwEmoBzJe2Q2rcCFkXEPsCjwDfKqHlYquef0r4BpgE5oDEiJgC3SBoB3AhMiYjx5K8EnFkwzn9HRCOwMPWbDHwSuAhA0lHAWOAAoBGYKOnQ4mIiYlZENEVEU92W9WUchpmZlaMWQ3R1RLRFxAZgJfBwRATQRj6UjgKmS1oGzAdGAB8FDgVuBoiIVqC1m/HPlbQcWATsRD6UAN4F7kvLLWlfpbqri+2OBK6LiPdTTX8Bdk/H92zqMzvV3ene9LUNeCIi3oiIPwPr0z3do9JrKbCE/A8ZYzEzs6qoxXui6wuWNxS830C+3g7gxIhYVbiRpF4HlnQY+XA7MCLWSZpPPoQB3kthTdpHOeems8Zyt+tunMLj7nw/DBDwg4i4rg/7MDOzCqnFmWhvHgDOUUpNSfum9kfJX/pF0jhgQhfb1gOvpgDdg/yl0v7yEPD3koalmrYHVgE5SR9LfU4BFpQx5gPA1yRtncYcI+nDFazZzMzKMBBD9HvA5kCrpJXpPcBPgK0lPQ1cTP7SarF5wLDU5xLyl3T7y/8F/jvVuRw4KSLeAU4H5khqIz/DLPlJ34h4ELgVeDxtfwewTcUrNzOzkmjjFUwbjIY3jI2GqVdWuwwzs02qr39PVFJLRDT11m8gzkTNzMxqQi0+WFQzJF0IfKmoeU5EfL8a9ZiZWW1xiPYghaUD08zMuuQQHeTGj6mnuY/3BszMrGu+J2pmZpaRQ9TMzCwjh6iZmVlGDlEzM7OMHKJmZmYZOUTNzMwycoiamZll5BA1MzPLyCFqZmaWkf+KyyAn6Q3yf8e0lo0CXq52Eb1wjZXhGivDNVZGTzXuHBGjexvAH/s3+K0q5c/5VJOkZtfYd66xMlxjZQyVGn0518zMLCOHqJmZWUYO0cFvVrULKIFrrAzXWBmusTKGRI1+sMjMzCwjz0TNzMwycoiamZll5BAdwCR9VtIqSb+RNL2L9cMl/Tytf0JSrmDdv6T2VZKOrqX6JOUkvS1pWXpd2x/1lVjjoZKWSHpf0uSidVMlPZdeU2u0xo6C83hvFWv8pqSnJLVKeljSzgXrauU89lRjrZzHMyS1pTr+S9JeBev6/Xu6LzXW0vd1Qb8TJYWkpoK28s5jRPg1AF9AHfA8sCvwIWA5sFdRn7OAa9PyV4Cfp+W9Uv/hwC5pnLoaqi8HrKiRc5gDJgA3AZML2rcHXkhft0vL29VSjWndmzVyHg8HtkzLZxb8W9fSeeyyxho7j9sWLB8LzEvL/f49XYEaa+b7OvXbBngUWAQ0ZT2PnokOXAcAv4mIFyLiXeB24LiiPscBs9PyHcARkpTab4+I9RGxGvhNGq9W6ttUeq0xItZERCuwoWjbo4GHIuIvEfEq8BDw2RqrcVMppcZfRcS69HYR8JG0XEvnsbsaN5VSany94O1WQOeToZvie7qvNW4qpfzfA/A94FLgnYK2ss+jQ3TgGgP8ruD971Nbl30i4n2gHdihxG2rWR/ALpKWSlogaVKFayunxv7Ythx93c8ISc2SFkk6vqKVbVRujV8H7s+4bVZ9qRFq6DxKOlvS88BlwLnlbFvlGqFGvq8l7QfsFBFzy922mD/2z2rRi8BHI+IVSROBX0jau+gnXCvNzhGxVtKuwCOS2iLi+WoVI+mrQBPwqWrV0JtuaqyZ8xgRVwNXSzoJ+A7Qb/eRs+qmxpr4vpa0GfB/gNMqMZ5nogPXWmCngvcfSW1d9pE0DKgHXilx26rVly6lvAIQES3k70t8vML1lVpjf2xbjj7tJyLWpq8vAPOBfStZXFJSjZKOBC4Ejo2I9eVsW+Uaa+o8FrgdOD7jtlllrrGGvq+3AcYB8yWtAT4J3JseLir/PPb3TV6/+u3m+TDyD2Hswsab53sX9TmbDz648//T8t588Ob5C1T+waK+1De6sx7yDwesBbavxjks6Hsjf/1g0WryD8Nsl5ZrrcbtgOFpeRTwHF08YLGJ/q33Jf+f5tii9po5jz3UWEvncWzB8heA5rTc79/TFaix5r6vU//5bHywqOzzWNHi/dq0L+AY4Nn0jX9haruY/E/RACOAOeRvji8Gdi3Y9sK03Srgc7VUH3AisBJYBiwBvlDFc7g/+fsib5Gfxa8s2PZrqfbfAKfXWo3AQUBb+k+hDfh6FWv8T+Cl9G+6DLi3Bs9jlzXW2Hn8YcH3xq8oCIdN8T3dlxpr6fu6qO98UohmOY/+2D8zM7OMfE/UzMwsI4eomZlZRg5RMzOzjByiZmZmGTlEzczMMnKImpmZZeQQNTMzy+h/AGO8zPtm/jL6AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -332,7 +639,8 @@ "source": [ "# plot feature importance\n", "import matplotlib.pyplot as plt\n", - "plt.barh(X_train.columns, automl.model.estimator.feature_importances_)" + "plt.barh(automl.feature_names_in_, automl.feature_importances_)\n", + "# plt.barh(X_train.columns, automl.model.estimator.feature_importances_)" ] }, { @@ -361,6 +669,14 @@ "tags": [] }, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n" + ] + }, { "name": "stdout", "output_type": "stream", @@ -431,15 +747,15 @@ "output_type": "stream", "text": [ "{'Current Learner': 'xgboost', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 4, 'max_leaves': 4, 'min_child_weight': 0.9999999999999993, 'learning_rate': 0.09999999999999995, 'subsample': 1.0, 'colsample_bylevel': 1.0, 'colsample_bytree': 1.0, 'reg_alpha': 0.0009765625, 'reg_lambda': 1.0}, 'Best Learner': 'xgboost', 'Best Hyper-parameters': {'n_estimators': 4, 'max_leaves': 4, 'min_child_weight': 0.9999999999999993, 'learning_rate': 0.09999999999999995, 'subsample': 1.0, 'colsample_bylevel': 1.0, 'colsample_bytree': 1.0, 'reg_alpha': 0.0009765625, 'reg_lambda': 1.0}}\n", - "{'Current Learner': 'xgboost', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 4, 'max_leaves': 4, 'min_child_weight': 0.26208115308159446, 'learning_rate': 0.25912534572860485, 'subsample': 0.9266743941610592, 'colsample_bylevel': 1.0, 'colsample_bytree': 1.0, 'reg_alpha': 0.0013933617380144255, 'reg_lambda': 0.18096917948292954}, 'Best Learner': 'xgboost', 'Best Hyper-parameters': {'n_estimators': 4, 'max_leaves': 4, 'min_child_weight': 0.26208115308159446, 'learning_rate': 0.25912534572860485, 'subsample': 0.9266743941610592, 'colsample_bylevel': 1.0, 'colsample_bytree': 1.0, 'reg_alpha': 0.0013933617380144255, 'reg_lambda': 0.18096917948292954}}\n", - "{'Current Learner': 'xgboost', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 4, 'max_leaves': 4, 'min_child_weight': 1.8630223791106992, 'learning_rate': 1.0, 'subsample': 0.8513627344387318, 'colsample_bylevel': 1.0, 'colsample_bytree': 0.946138073111236, 'reg_alpha': 0.0018311776973217073, 'reg_lambda': 0.27901659190538414}, 'Best Learner': 'xgboost', 'Best Hyper-parameters': {'n_estimators': 4, 'max_leaves': 4, 'min_child_weight': 1.8630223791106992, 'learning_rate': 1.0, 'subsample': 0.8513627344387318, 'colsample_bylevel': 1.0, 'colsample_bytree': 0.946138073111236, 'reg_alpha': 0.0018311776973217073, 'reg_lambda': 0.27901659190538414}}\n", - "{'Current Learner': 'xgboost', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 11, 'max_leaves': 4, 'min_child_weight': 5.909231502320296, 'learning_rate': 1.0, 'subsample': 0.8894434216129232, 'colsample_bylevel': 1.0, 'colsample_bytree': 1.0, 'reg_alpha': 0.0013605736901132325, 'reg_lambda': 0.1222158118565165}, 'Best Learner': 'xgboost', 'Best Hyper-parameters': {'n_estimators': 11, 'max_leaves': 4, 'min_child_weight': 5.909231502320296, 'learning_rate': 1.0, 'subsample': 0.8894434216129232, 'colsample_bylevel': 1.0, 'colsample_bytree': 1.0, 'reg_alpha': 0.0013605736901132325, 'reg_lambda': 0.1222158118565165}}\n", - "{'Current Learner': 'xgboost', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 11, 'max_leaves': 11, 'min_child_weight': 8.517629386811171, 'learning_rate': 1.0, 'subsample': 0.9233328006239466, 'colsample_bylevel': 1.0, 'colsample_bytree': 0.9468117873770695, 'reg_alpha': 0.034996420228767956, 'reg_lambda': 0.6169079461473824}, 'Best Learner': 'xgboost', 'Best Hyper-parameters': {'n_estimators': 11, 'max_leaves': 11, 'min_child_weight': 8.517629386811171, 'learning_rate': 1.0, 'subsample': 0.9233328006239466, 'colsample_bylevel': 1.0, 'colsample_bytree': 0.9468117873770695, 'reg_alpha': 0.034996420228767956, 'reg_lambda': 0.6169079461473824}}\n", - "{'Current Learner': 'xgboost', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 20, 'max_leaves': 15, 'min_child_weight': 43.62419686983011, 'learning_rate': 0.6413547778096401, 'subsample': 1.0, 'colsample_bylevel': 1.0, 'colsample_bytree': 0.8481188761562112, 'reg_alpha': 0.01241885232679939, 'reg_lambda': 0.21352682817916668}, 'Best Learner': 'xgboost', 'Best Hyper-parameters': {'n_estimators': 20, 'max_leaves': 15, 'min_child_weight': 43.62419686983011, 'learning_rate': 0.6413547778096401, 'subsample': 1.0, 'colsample_bylevel': 1.0, 'colsample_bytree': 0.8481188761562112, 'reg_alpha': 0.01241885232679939, 'reg_lambda': 0.21352682817916668}}\n", - "{'Current Learner': 'xgboost', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 58, 'max_leaves': 8, 'min_child_weight': 51.84874392377357, 'learning_rate': 0.23511987355535005, 'subsample': 1.0, 'colsample_bylevel': 0.8182737361783602, 'colsample_bytree': 0.8031986460435498, 'reg_alpha': 0.00400039941928546, 'reg_lambda': 0.38702529681004805}, 'Best Learner': 'xgboost', 'Best Hyper-parameters': {'n_estimators': 58, 'max_leaves': 8, 'min_child_weight': 51.84874392377357, 'learning_rate': 0.23511987355535005, 'subsample': 1.0, 'colsample_bylevel': 0.8182737361783602, 'colsample_bytree': 0.8031986460435498, 'reg_alpha': 0.00400039941928546, 'reg_lambda': 0.38702529681004805}}\n", - "{'Current Learner': 'xgboost', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 101, 'max_leaves': 14, 'min_child_weight': 7.444058088783035, 'learning_rate': 0.39220715578198356, 'subsample': 1.0, 'colsample_bylevel': 0.6274332478496758, 'colsample_bytree': 0.7190251742957809, 'reg_alpha': 0.007212902167942765, 'reg_lambda': 0.20172056689658188}, 'Best Learner': 'xgboost', 'Best Hyper-parameters': {'n_estimators': 101, 'max_leaves': 14, 'min_child_weight': 7.444058088783035, 'learning_rate': 0.39220715578198356, 'subsample': 1.0, 'colsample_bylevel': 0.6274332478496758, 'colsample_bytree': 0.7190251742957809, 'reg_alpha': 0.007212902167942765, 'reg_lambda': 0.20172056689658188}}\n", - "{'Current Learner': 'xgboost', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 205, 'max_leaves': 30, 'min_child_weight': 5.450621032615097, 'learning_rate': 0.12229148765139466, 'subsample': 0.8895588746662894, 'colsample_bylevel': 0.47518959001130784, 'colsample_bytree': 0.6845612830806885, 'reg_alpha': 0.01126059820390593, 'reg_lambda': 0.08170816686602457}, 'Best Learner': 'xgboost', 'Best Hyper-parameters': {'n_estimators': 205, 'max_leaves': 30, 'min_child_weight': 5.450621032615097, 'learning_rate': 0.12229148765139466, 'subsample': 0.8895588746662894, 'colsample_bylevel': 0.47518959001130784, 'colsample_bytree': 0.6845612830806885, 'reg_alpha': 0.01126059820390593, 'reg_lambda': 0.08170816686602457}}\n", - "{'Current Learner': 'xgboost', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 222, 'max_leaves': 62, 'min_child_weight': 7.5054716192185795, 'learning_rate': 0.04623175582706435, 'subsample': 0.8756054034199897, 'colsample_bylevel': 0.44768367042684304, 'colsample_bytree': 0.7352307811741962, 'reg_alpha': 0.0009765625, 'reg_lambda': 0.6207832675443773}, 'Best Learner': 'xgboost', 'Best Hyper-parameters': {'n_estimators': 222, 'max_leaves': 62, 'min_child_weight': 7.5054716192185795, 'learning_rate': 0.04623175582706435, 'subsample': 0.8756054034199897, 'colsample_bylevel': 0.44768367042684304, 'colsample_bytree': 0.7352307811741962, 'reg_alpha': 0.0009765625, 'reg_lambda': 0.6207832675443773}}\n" + "{'Current Learner': 'xgboost', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 4, 'max_leaves': 4, 'min_child_weight': 0.26208115308159446, 'learning_rate': 0.25912534572860507, 'subsample': 0.9266743941610592, 'colsample_bylevel': 1.0, 'colsample_bytree': 1.0, 'reg_alpha': 0.0013933617380144255, 'reg_lambda': 0.18096917948292954}, 'Best Learner': 'xgboost', 'Best Hyper-parameters': {'n_estimators': 4, 'max_leaves': 4, 'min_child_weight': 0.26208115308159446, 'learning_rate': 0.25912534572860507, 'subsample': 0.9266743941610592, 'colsample_bylevel': 1.0, 'colsample_bytree': 1.0, 'reg_alpha': 0.0013933617380144255, 'reg_lambda': 0.18096917948292954}}\n", + "{'Current Learner': 'xgboost', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 4, 'max_leaves': 4, 'min_child_weight': 1.8630223791106992, 'learning_rate': 1.0, 'subsample': 0.8513627344387318, 'colsample_bylevel': 1.0, 'colsample_bytree': 0.946138073111236, 'reg_alpha': 0.0018311776973217071, 'reg_lambda': 0.2790165919053837}, 'Best Learner': 'xgboost', 'Best Hyper-parameters': {'n_estimators': 4, 'max_leaves': 4, 'min_child_weight': 1.8630223791106992, 'learning_rate': 1.0, 'subsample': 0.8513627344387318, 'colsample_bylevel': 1.0, 'colsample_bytree': 0.946138073111236, 'reg_alpha': 0.0018311776973217071, 'reg_lambda': 0.2790165919053837}}\n", + "{'Current Learner': 'xgboost', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 11, 'max_leaves': 4, 'min_child_weight': 5.909231502320289, 'learning_rate': 1.0, 'subsample': 0.8894434216129232, 'colsample_bylevel': 1.0, 'colsample_bytree': 1.0, 'reg_alpha': 0.0013605736901132325, 'reg_lambda': 0.12221581185651631}, 'Best Learner': 'xgboost', 'Best Hyper-parameters': {'n_estimators': 11, 'max_leaves': 4, 'min_child_weight': 5.909231502320289, 'learning_rate': 1.0, 'subsample': 0.8894434216129232, 'colsample_bylevel': 1.0, 'colsample_bytree': 1.0, 'reg_alpha': 0.0013605736901132325, 'reg_lambda': 0.12221581185651631}}\n", + "{'Current Learner': 'xgboost', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 11, 'max_leaves': 11, 'min_child_weight': 8.51762938681116, 'learning_rate': 1.0, 'subsample': 0.9233328006239466, 'colsample_bylevel': 1.0, 'colsample_bytree': 0.9468117873770695, 'reg_alpha': 0.034996420228767956, 'reg_lambda': 0.616907946147381}, 'Best Learner': 'xgboost', 'Best Hyper-parameters': {'n_estimators': 11, 'max_leaves': 11, 'min_child_weight': 8.51762938681116, 'learning_rate': 1.0, 'subsample': 0.9233328006239466, 'colsample_bylevel': 1.0, 'colsample_bytree': 0.9468117873770695, 'reg_alpha': 0.034996420228767956, 'reg_lambda': 0.616907946147381}}\n", + "{'Current Learner': 'xgboost', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 20, 'max_leaves': 15, 'min_child_weight': 43.62419686983011, 'learning_rate': 0.6413547778096401, 'subsample': 1.0, 'colsample_bylevel': 1.0, 'colsample_bytree': 0.8481188761562112, 'reg_alpha': 0.01241885232679939, 'reg_lambda': 0.21352682817916618}, 'Best Learner': 'xgboost', 'Best Hyper-parameters': {'n_estimators': 20, 'max_leaves': 15, 'min_child_weight': 43.62419686983011, 'learning_rate': 0.6413547778096401, 'subsample': 1.0, 'colsample_bylevel': 1.0, 'colsample_bytree': 0.8481188761562112, 'reg_alpha': 0.01241885232679939, 'reg_lambda': 0.21352682817916618}}\n", + "{'Current Learner': 'xgboost', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 58, 'max_leaves': 8, 'min_child_weight': 51.84874392377363, 'learning_rate': 0.23511987355535005, 'subsample': 1.0, 'colsample_bylevel': 0.8182737361783602, 'colsample_bytree': 0.8031986460435498, 'reg_alpha': 0.00400039941928546, 'reg_lambda': 0.3870252968100468}, 'Best Learner': 'xgboost', 'Best Hyper-parameters': {'n_estimators': 58, 'max_leaves': 8, 'min_child_weight': 51.84874392377363, 'learning_rate': 0.23511987355535005, 'subsample': 1.0, 'colsample_bylevel': 0.8182737361783602, 'colsample_bytree': 0.8031986460435498, 'reg_alpha': 0.00400039941928546, 'reg_lambda': 0.3870252968100468}}\n", + "{'Current Learner': 'xgboost', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 101, 'max_leaves': 14, 'min_child_weight': 7.444058088783045, 'learning_rate': 0.39220715578198356, 'subsample': 1.0, 'colsample_bylevel': 0.6274332478496758, 'colsample_bytree': 0.7190251742957809, 'reg_alpha': 0.007212902167942765, 'reg_lambda': 0.2017205668965811}, 'Best Learner': 'xgboost', 'Best Hyper-parameters': {'n_estimators': 101, 'max_leaves': 14, 'min_child_weight': 7.444058088783045, 'learning_rate': 0.39220715578198356, 'subsample': 1.0, 'colsample_bylevel': 0.6274332478496758, 'colsample_bytree': 0.7190251742957809, 'reg_alpha': 0.007212902167942765, 'reg_lambda': 0.2017205668965811}}\n", + "{'Current Learner': 'xgboost', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 205, 'max_leaves': 30, 'min_child_weight': 5.450621032615097, 'learning_rate': 0.12229148765139466, 'subsample': 0.8895588746662894, 'colsample_bylevel': 0.47518959001130784, 'colsample_bytree': 0.6845612830806885, 'reg_alpha': 0.01126059820390593, 'reg_lambda': 0.0817081668660242}, 'Best Learner': 'xgboost', 'Best Hyper-parameters': {'n_estimators': 205, 'max_leaves': 30, 'min_child_weight': 5.450621032615097, 'learning_rate': 0.12229148765139466, 'subsample': 0.8895588746662894, 'colsample_bylevel': 0.47518959001130784, 'colsample_bytree': 0.6845612830806885, 'reg_alpha': 0.01126059820390593, 'reg_lambda': 0.0817081668660242}}\n", + "{'Current Learner': 'xgboost', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 222, 'max_leaves': 62, 'min_child_weight': 7.505471619218571, 'learning_rate': 0.04623175582706431, 'subsample': 0.8756054034199897, 'colsample_bylevel': 0.44768367042684304, 'colsample_bytree': 0.7352307811741962, 'reg_alpha': 0.0009765625, 'reg_lambda': 0.6207832675443745}, 'Best Learner': 'xgboost', 'Best Hyper-parameters': {'n_estimators': 222, 'max_leaves': 62, 'min_child_weight': 7.505471619218571, 'learning_rate': 0.04623175582706431, 'subsample': 0.8756054034199897, 'colsample_bylevel': 0.44768367042684304, 'colsample_bytree': 0.7352307811741962, 'reg_alpha': 0.0009765625, 'reg_lambda': 0.6207832675443745}}\n" ] } ], @@ -463,7 +779,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEWCAYAAABIVsEJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAgXklEQVR4nO3dfbxVZZ338c/XIwhOKaJkiCB6S6RmQZ5szJrUNLEpoDJTZxoyjWqyZvKOlCxtbJzBnMnsddsDmanlMylSYYyKWpOPRyEBjUQ0BVFRxEyJx9/9x7qOLLZ7bzbrnH32Pmd/36/Xfu21rnWttX57wdm/fa1rrWspIjAzM9tW2zU6ADMz652cQMzMrBAnEDMzK8QJxMzMCnECMTOzQpxAzMysECcQszqQ9B5Jixsdh1k9OYFYnyPpcUlHNjKGiPhtRIyu1/YlHS3pN5JekrRS0h2Sxtdrf2blOIGYFSCprYH7Pha4Drgc2BPYHTgL+FCBbUmSvwesEP/HsZYhaTtJZ0h6VNLzkq6VNDi3/DpJT0t6Mf26PyC37FJJ35c0W9LLwOGppfNlSQ+mda6RNCDVP0zSstz6Feum5V+RtELSU5JOkRSS9i3zGQR8G/hmRFwcES9GxKaIuCMiPp3qfEPSz3LrjEzb2z7N3y7pXEm/A14BpkjqKNnPlyTNStM7SPovSU9IekbSDyQN7OI/h/UBTiDWSr4ATATeC+wBvABclFt+EzAKeAPwAHBFyfonAucCrwf+N5UdB4wD9gbeCnyyyv7L1pU0DjgNOBLYFzisyjZGA8OBGVXq1OITwGSyz/IDYLSkUbnlJwJXpulpwJuAMSm+YWQtHmtxTiDWSj4LnBkRyyJiLfAN4NjOX+YRcUlEvJRb9jZJO+fWvzEifpd+8f81lX03Ip6KiFXAL8i+ZCupVPc44CcRsSgiXkn7rmTX9L6ito9c0aVpfxsi4kXgRuAEgJRI3gzMSi2eycCXImJVRLwE/AdwfBf3b32AE4i1kr2AGyStlrQaeBjYCOwuqU3StHR668/A42md3XLrP1lmm0/npl8BXldl/5Xq7lGy7XL76fR8eh9apU4tSvdxJSmBkLU+ZqZkNgTYEbg/d9x+ncqtxTmBWCt5EjgmIgblXgMiYjnZl+YEstNIOwMj0zrKrV+voatXkHWGdxpepe5iss/x0Sp1Xib70u/0xjJ1Sj/LzcAQSWPIEknn6avngDXAAbljtnNEVEuU1iKcQKyv6idpQO61Pdm5/nMl7QUgaYikCan+64G1ZL/wdyQ7TdNTrgVOkrSfpB2Br1eqGNnzF04Dvi7pJEk7pYsD3i1peqo2H/g7SSPSKbipWwsgItaTXdl1PjCYLKEQEZuAHwEXSHoDgKRhko4u+mGt73ACsb5qNtkv587XN4ALgVnA/0h6CbgbeGeqfznwJ2A58FBa1iMi4ibgu8BtwJLcvtdWqD8D+DjwKeAp4Bng38n6MYiIm4FrgAeB+4Ff1hjKlWQtsOsiYkOu/PTOuNLpvVvIOvOtxckPlDJrLpL2AxYCO5R8kZs1FbdAzJqApA+n+y12Ac4DfuHkYc3OCcSsOXwGeBZ4lOzKsM81NhyzrfMpLDMzK8QtEDMzK2T7RgfQk3bbbbcYOXJko8MwM+tV7r///uci4jU3j7ZUAhk5ciQdHR1br2hmZq+S9Kdy5T6FZWZmhTiBmJlZIU4gZmZWiBOImZkV4gRiZmaFtNRVWJaZOW85589ZzFOr17DHoIFMOXo0E8cOa3RYZtbN6v237gTSYmbOW87U6xewZv1GAJavXsPU6xcAOImY9SE98bfuBNKk6vXL4fw5i1/9D9VpzfqNfGXGg1x17xNd3r6ZNYd5T6xm3cZNW5StWb+R8+csdgLpjWpNCvX85fDU6jVly0v/o5lZ71bpb7rSd0ARTiB1UC5RADUnhXq2Evq1bVf2P9awQQO55jOHdGnbZtY8Dp02l+VlksUegwZ22z6cQLpZpdbDgH7b1ZwUyv2jQ/e0EoYPHshjz73MptwgzAP7tb2a5Mysb5hy9Ogtvoug+//WnUC6WaXWQ2lZp3JJoX+dWwm+Csus7+v8m+6zV2FJGkf2nOo24OKImFay/ALg8DS7I/CGiBiUlm0EFqRlT0TE+B4Jeiu29fxiuaRQ2oqB7v3lMHHsMCcMsxZQ77/1hiUQSW3ARcBRwDLgPkmzIuKhzjoR8aVc/S8AY3ObWBMRY3oo3Kryv+i3k9hY5iFdgwb2Y+2GTTUlhZ745WBm1lWNbIEcDCyJiKUAkq4GJgAPVah/AnB2D8VWs9LWQrnkMbBfG98YfwBQe1JwK8HMml0jE8gw4Mnc/DLgneUqStoL2BuYmyseIKkD2ABMi4iZdYqzqnJ9HnnDShKFk4KZ9RW9pRP9eGBGROS/qfeKiOWS9gHmSloQEY+WrihpMjAZYMSIEd0eWLU+j//48IGc+M7u36eZWTNo5GCKy4Hhufk9U1k5xwNX5QsiYnl6Xwrczpb9I/l60yOiPSLahwx5zRMZu6zSNdXDBg108jCzPq2RLZD7gFGS9iZLHMcDJ5ZWkvRmYBfgrlzZLsArEbFW0m7AocC3eiRqtuw033lgP/q1ifUbN/d9+L4KM2sFDUsgEbFB0qnAHLLLeC+JiEWSzgE6ImJWqno8cHXEFr3T+wE/lLSJrBU1LX/1Vj2VdpqvXrOeftuJ7bcTGzbFa/o8zMz6KkWZq4b6qvb29ujo6OjSNioNDyDg4L0HezgQM+tzJN0fEe2l5X6g1Daq1GkewIQxbnWYWetwAtlG7jQ3M8s4gWyjKUePZmC/ti3K3GluZq2ot9wH0jQ6O8e/MuNB1m3c5E5zM2tZTiAFTBw77NUh2N1pbmatygmkRqVDoA/otx27vW6HRodlZtYwTiA1KPeQqO3U4KDMzBrMneg1KDdg4qaAJ1d137OFzcx6GyeQGlS696M7HjFrZtZbOYHUoNq9H2ZmrcoJpAa+98PM7LXciV4D3/thZvZaTiA18r0fZmZb8iksMzMrxAnEzMwKcQIxM7NCnEDMzKyQhiYQSeMkLZa0RNIZZZZ/UtJKSfPT65TcskmSHkmvST0buZmZNewqLEltwEXAUcAy4D5Js8o82/yaiDi1ZN3BwNlAO9nDAO9P677QA6GbmRmNbYEcDCyJiKURsQ64GphQ47pHAzdHxKqUNG4GxtUpTjMzK6ORCWQY8GRuflkqK/VRSQ9KmiFp+Daui6TJkjokdaxcubI74jYzM5q/E/0XwMiIeCtZK+Oybd1AREyPiPaIaB8yZEi3B2hm1qoamUCWA8Nz83umsldFxPMRsTbNXgwcVOu6ZmZWX41MIPcBoyTtLak/cDwwK19B0tDc7Hjg4TQ9B3i/pF0k7QK8P5WZmVkPadhVWBGxQdKpZF/8bcAlEbFI0jlAR0TMAr4oaTywAVgFfDKtu0rSN8mSEMA5EbGqxz+EmVkLa+hgihExG5hdUnZWbnoqMLXCupcAl9Q1QDMzq6jZO9HNzKxJOYGYmVkhTiBmZlaIE4iZmRXiBGJmZoU4gZiZWSFOIGZmVogTiJmZFeIEYmZmhTiBmJlZIU4gZmZWiBOImZkV4gRiZmaFOIGYmVkhTiBmZlaIE4iZmRXS0AQiaZykxZKWSDqjzPLTJD0k6UFJt0raK7dso6T56TWrdF0zM6uvhj2RUFIbcBFwFLAMuE/SrIh4KFdtHtAeEa9I+hzwLeDjadmaiBjTkzGbmdlmjWyBHAwsiYilEbEOuBqYkK8QEbdFxCtp9m5gzx6O0czMKmhkAhkGPJmbX5bKKjkZuCk3P0BSh6S7JU2stJKkyalex8qVK7sUsJmZbdawU1jbQtI/Au3Ae3PFe0XEckn7AHMlLYiIR0vXjYjpwHSA9vb26JGAzcxaQCNbIMuB4bn5PVPZFiQdCZwJjI+ItZ3lEbE8vS8FbgfG1jNYMzPbUiMTyH3AKEl7S+oPHA9scTWVpLHAD8mSx7O58l0k7ZCmdwMOBfKd72ZmVmcNO4UVERsknQrMAdqASyJikaRzgI6ImAWcD7wOuE4SwBMRMR7YD/ihpE1kSXBaydVbZmZWZw3tA4mI2cDskrKzctNHVljvTuDA+kZnZmbV+E50MzMrxAmkBjPnLefQaXO557FVzHtiNTPnvaav38ys5fSKy3gbaea85Uy9fgFr1m8EYN3GTUy9fgEAE8dWu23FzKxvcwtkK86fs/jV5NFpzfqNnD9ncYMiMjNrDk4gW/HU6jXbVG5m1iqcQLZij0EDt6nczKxVVE0gknaS9H/KlL+1fiE1lylHj2Zgv7Ytygb2a2PK0aMbFJGZWXOomEAkHQf8Afi5pEWS3pFbfGm9A2sWE8cO4z8/ciD927JDNWzQQP7zIwe6A93MWl61q7C+ChwUESskHQz8VNLUiLgBUM+E1xwmjh3GVfc+AcA1nzmkwdGYmTWHagmkLSJWAETEvZIOB34paTjgUW3NzFpctT6Ql/L9HymZHEb20KcD6hyXmZk1uWotkM9RcqoqIl6SNA44rq5RmZlZ06vYAomI3wOPSbqtpHx9RFxR98jMzKypVb2MNyI2Apsk7dxD8ZiZWS9Ry1hYfwEWSLoZeLmzMCK+WLeozMys6dWSQK5PLzMzs1dtNYFExGX12nnqkL+Q7ImEF0fEtJLlOwCXAwcBzwMfj4jH07KpwMnARuCLETGnXnGamdlrNWwsLEltwEXAMcD+wAmS9i+pdjLwQkTsC1wAnJfW3Z/sGeoHAOOA76XtmZlZD2nkYIoHA0siYmlErAOuJrvHJG8C0NkCmgG8T9nD0ScAV0fE2oh4DFiStmdmZj2kkQlkGPBkbn5ZKitbJyI2AC8Cu9a4rpmZ1dFW+0AkvQmYAuyVrx8RR9Qxrm4jaTIwGWDEiBENjsbMrO+o5Sqs64AfAD8i67DuLsuB4bn5PVNZuTrLJG0P7EzWmV7LugBExHRgOkB7e7vH8DIz6ya1JJANEfH9Ouz7PmCUpL3JvvyPB04sqTMLmATcBRwLzI2IkDQLuFLSt4E9gFHAvXWI0czMKqglgfxC0j8DNwBrOwsjYlVXdhwRGySdCswhu4z3kohYJOkcoCMiZgE/JhtGfgmwiizJkOpdCzwEbAA+n+6aNzOzHlJLApmU3qfkygLYp6s7j4jZwOySsrNy038FPlZh3XOBc7sag5mZFVPLjYR790QgZmbWu9RyFVY/sqHd/y4V3Q78MCLW1zEuMzNrcrWcwvo+0A/4Xpr/RCo7pV5BmZlZ86slgbwjIt6Wm58r6ff1CsjMzHqHWu5E35h/tK2kfeje+0HMzKwXqqUFMgW4TdJSskfc7gWcVNeozMys6dVyFdatkkYBo1PR4ohYW20dMzPr+yomEElHRMRcSR8pWbSvJCLCD5kyM2th1Vog7wXmAh8qsyzwUwrNzFpaxQQSEWenyXPSMzdelcavMjOzFlbLVVg/L1M2o7sDMTOz3qVaH8ibyR4Zu3NJP8hOwIB6B2ZmZs2tWh/IaOCDwCC27Ad5Cfh0HWMyM7NeoFofyI3AjZIOiYi7ejAmMzPrBWq5kXCepM+Tnc569dRVRHyqblGZmVnTq6UT/afAG4GjgTvIHh/7Uj2DMjOz5ldLAtk3Ir4OvBwRlwF/D7yzvmGZmVmzqyWBdD73Y7WktwA7A2/oyk4lDZZ0s6RH0vsuZeqMkXSXpEWSHpT08dyySyU9Jml+eo3pSjxmZrbtakkg09MX/NeBWWTPIf9WF/d7BnBrRIwCbk3zpV4B/ikiDgDGAd+RNCi3fEpEjEmv+V2Mx8zMtlEtgylenCbvoBueg55MAA5L05eRPeXw9JL9/jE3/ZSkZ4EhwOpuisHMzLqg2o2Ep1VbMSK+3YX97h4RK9L008Du1SpLOhjoDzyaKz5X0lmkFkylEYIlTQYmA4wYMaILIZuZWV61Fsjr0/to4B1kp68gu6nw3q1tWNItZFdvlTozPxMRISmqbGco2ZVgkyJiUyqeSpZ4+gPTyVov55RbPyKmpzq0t7dX3I+ZmW2bajcS/huApN8Ab4+Il9L8N4BfbW3DEXFkpWWSnpE0NCJWpATxbIV6O6V9nRkRd+e23dl6WSvpJ8CXtxaPmZl1r1o60XcH1uXm17GVU041mAVMStOTgBtLK0jqD9wAXB4RM0qWDU3vAiYCC7sYj5mZbaNa7kS/HLhX0g1pfiJwaRf3Ow24VtLJwJ+A4wAktQOfjYhTUtnfAbtK+mRa75PpiqsrJA0he8TufOCzXYzHzMy2US1XYZ0r6SbgPanopIiY15WdRsTzwPvKlHcAp6TpnwE/q7D+EV3Zv5mZdV21q7B2iog/SxoMPJ5encsGR8Sq+odnZmbNqloL5Eqy4dzvJ3uEbSel+e66J8TMzHqhaldhfTC9+/G1Zmb2GtVOYb292ooR8UD3h2NmZr1FtVNY/11lWQDuyDYza2HVTmEd3pOBmJlZ71LLfSCkYdz3Z8snEl5er6DMzKz5bTWBSDqbbOTc/YHZwDHA/5LdYGhmZi2qlqFMjiW76e/piDgJeBvZQ6XMzKyF1ZJA1qRRcDekwQ2fBYbXNywzM2t2tfSBdKQnAf6I7KbCvwB31TMoMzNrftXuA7kIuDIi/jkV/UDSr4GdIuLBHonOzMyaVrUWyB+B/0pDp18LXNXVQRTNzKzvqNgHEhEXRsQhwHuB54FLJP1B0tmS3tRjEZqZWVPaaid6RPwpIs6LiLHACWTPA3m43oGZmVlz22oCkbS9pA9JugK4CVgMfKTukZmZWVOr1ol+FFmL4wPAvcDVwOSIeLmrO03PGLkGGEn2nJHjIuKFMvU2AgvS7BMRMT6V753i2ZXsyrBPRMS60vXNzKx+qrVApgJ3AvtFxPiIuLI7kkdyBnBrRIwCbk3z5ayJiDHpNT5Xfh5wQUTsC7wAnNxNcZmZWY2qdaIfEREXl2sZdIMJwGVp+jKyfpWaSBLZSMAziqxvZmbdo5Y70eth94hYkaafBnavUG+ApA5Jd0uamMp2BVZHxIY0vwwYVmlHkianbXSsXLmyO2I3MzNqHI23CEm3AG8ss+jM/ExEhKQoUw9gr4hYLmkfYK6kBcCL2xJHREwHpgO0t7dX2o+ZmW2juiWQiDiy0jJJz0gaGhEr0o2Kz1bYxvL0vlTS7cBY4OfAIEnbp1bInsDybv8AZmZWVaNOYc0CJqXpScCNpRUk7SJphzS9G3Ao8FBEBHAb2SjBFdc3M7P6alQCmQYcJekR4Mg0j6R2SRenOvuRDeT4e7KEMS0iHkrLTgdOk7SErE/kxz0avZmZ1e8UVjUR8TzZM0ZKyzuAU9L0ncCBFdZfChxczxjNzKy6RrVAzMysl3MCMTOzQpxAzMysECcQMzMrxAnEzMwKcQIxM7NCnEDMzKwQJxAzMyvECcTMzApxAjEzs0KcQMzMrBAnEDMzK8QJxMzMCnECMTOzQpxAzMysECcQMzMrxAnEzMwKaUgCkTRY0s2SHknvu5Spc7ik+bnXXyVNTMsulfRYbtmYnv4MZmatrlEtkDOAWyNiFHBrmt9CRNwWEWMiYgxwBPAK8D+5KlM6l0fE/B6I2czMchqVQCYAl6Xpy4CJW6l/LHBTRLxSz6DMzKx2jUogu0fEijT9NLD7VuofD1xVUnaupAclXSBph0orSposqUNSx8qVK7sQspmZ5dUtgUi6RdLCMq8J+XoREUBU2c5Q4EBgTq54KvBm4B3AYOD0SutHxPSIaI+I9iFDhnTlI5mZWc729dpwRBxZaZmkZyQNjYgVKUE8W2VTxwE3RMT63LY7Wy9rJf0E+HK3BG1mZjVr1CmsWcCkND0JuLFK3RMoOX2Vkg6SRNZ/srD7QzQzs2oalUCmAUdJegQ4Ms0jqV3SxZ2VJI0EhgN3lKx/haQFwAJgN+DfeyJoMzPbrG6nsKqJiOeB95Up7wBOyc0/DgwrU++IesZnZmZb5zvRzcysECcQMzMrxAnEzMwKcQIxM7NCnEDMzKwQJxAzMyvECcTMzApxAjEzs0KcQMzMrBAnEDMzK8QJxMzMCnECMTOzQpxAzMysECcQMzMrxAnEzMwKcQIxM7NCGpJAJH1M0iJJmyS1V6k3TtJiSUsknZEr31vSPan8Gkn9eyZyMzPr1KgWyELgI8BvKlWQ1AZcBBwD7A+cIGn/tPg84IKI2Bd4ATi5vuGamVmphiSQiHg4IhZvpdrBwJKIWBoR64CrgQmSBBwBzEj1LgMm1i1YMzMrq5n7QIYBT+bml6WyXYHVEbGhpLwsSZMldUjqWLlyZd2CNTNrNdvXa8OSbgHeWGbRmRFxY732WyoipgPTAdrb26On9mtm1tfVLYFExJFd3MRyYHhufs9U9jwwSNL2qRXSWW5mZj2omU9h3QeMSldc9QeOB2ZFRAC3AcemepOAHmvRmJlZplGX8X5Y0jLgEOBXkuak8j0kzQZIrYtTgTnAw8C1EbEobeJ04DRJS8j6RH7c05/BzKzV1e0UVjURcQNwQ5nyp4AP5OZnA7PL1FtKdpWWmZk1SDOfwjIzsybmBGJmZoU4gZiZWSFOIGZmVogTyFbMnLecQ6fN5Z7HVjHvidXMnOdbTszMoEFXYfUWM+ctZ+r1C1izfiMA6zZuYur1CwCYOLbi6ClmZi3BLZAqzp+z+NXk0WnN+o2cP2dr40CamfV9TiBVPLV6zTaVm5m1EieQKvYYNHCbys3MWokTSBVTjh7NwH5tW5QN7NfGlKNHNygiM7Pm4U70Kjo7ys+fs5inVq9hj0EDmXL0aHegm5nhBLJVE8cOc8IwMyvDp7DMzKwQJxAzMyvECcTMzApxAjEzs0KcQMzMrBBljxhvDZJWAn8qsOpuwHPdHE5v5WOxJR+PzXwsNutrx2KviBhSWthSCaQoSR0R0d7oOJqBj8WWfDw287HYrFWOhU9hmZlZIU4gZmZWiBNIbaY3OoAm4mOxJR+PzXwsNmuJY+E+EDMzK8QtEDMzK8QJxMzMCnECqULSOEmLJS2RdEaj4+lpki6R9KykhbmywZJulvRIet+lkTH2FEnDJd0m6SFJiyT9SypvueMhaYCkeyX9Ph2Lf0vle0u6J/29XCOpf6Nj7SmS2iTNk/TLNN8Sx8IJpAJJbcBFwDHA/sAJkvZvbFQ97lJgXEnZGcCtETEKuDXNt4INwP+NiP2BvwU+n/4/tOLxWAscERFvA8YA4yT9LXAecEFE7Au8AJzcuBB73L8AD+fmW+JYOIFUdjCwJCKWRsQ64GpgQoNj6lER8RtgVUnxBOCyNH0ZMLEnY2qUiFgREQ+k6ZfIviyG0YLHIzJ/SbP90iuAI4AZqbwljgWApD2BvwcuTvOiRY6FE0hlw4Anc/PLUlmr2z0iVqTpp4HdGxlMI0gaCYwF7qFFj0c6ZTMfeBa4GXgUWB0RG1KVVvp7+Q7wFWBTmt+VFjkWTiBWWGTXgLfUdeCSXgf8HPjXiPhzflkrHY+I2BgRY4A9yVrrb25sRI0h6YPAsxFxf6NjaQQ/0ray5cDw3PyeqazVPSNpaESskDSU7BdoS5DUjyx5XBER16filj0eABGxWtJtwCHAIEnbp1/erfL3cigwXtIHgAHATsCFtMixcAuksvuAUelqiv7A8cCsBsfUDGYBk9L0JODGBsbSY9J57R8DD0fEt3OLWu54SBoiaVCaHggcRdYndBtwbKrWEsciIqZGxJ4RMZLsO2JuRPwDLXIsfCd6FelXxXeANuCSiDi3sRH1LElXAYeRDU39DHA2MBO4FhhBNjT+cRFR2tHe50h6N/BbYAGbz3V/lawfpKWOh6S3knUMt5H9CL02Is6RtA/ZxSaDgXnAP0bE2sZF2rMkHQZ8OSI+2CrHwgnEzMwK8SksMzMrxAnEzMwKcQIxM7NCnEDMzKwQJxAzMyvECcT6DEkXSPrX3PwcSRfn5v9b0mlV1r9U0rFp+nZJ7WXq9JM0LY2++4CkuyQdk5Y9Lmm3AnG/ut8Kyy+SND+NBLwmTc+XdKyk2Z33ZHQnSUM7R5atsLy/pN9I8s3ILcwJxPqS3wHvApC0Hdn9Kwfklr8LuLOL+/gmMBR4S0S8nWyQvNd3cZtVRcTn07AhHwAejYgx6TUjIj4QEavrsNvTgB9ViWkd2ejDH6/Dvq2XcAKxvuROsiE1IEscC4GXJO0iaQdgP+ABSWdJuk/SQknT013mWyVpR+DTwBc6bwqLiGci4toydU9L219Y0ir6J0kPpmdp/LTMet9MLZK2GmN6XNJukkZK+kNa94+SrpB0pKTfpdbSwan+3yh7zsu96fkVlUaY/ijw67TOAan+/BT7qFRnJvAPtcRpfZObn9ZnRMRTkjZIGkHW2riLbBTUQ4AXgQURsU7S/4uIcwDSl/gHgV/UsIt9gSdKB1EsJekg4CTgnYCAeyTdAawDvga8KyKekzS4ZL3zyVozJ0WxO3z3BT4GfIpsKJ4TgXcD48nump8InEk23Man0qmveyXdEhEv5+LYG3ghd+f0Z4ELI+KKNKxPZ3JbCLyjQJzWR7gFYn3NnWTJozOB3JWb/12qc7iyp8UtIHtuwwHlNtQF7wZuiIiX03Mzrgfek/Z1XUQ8B1Ay5MnXgZ0j4rMFkwfAYxGxICI2AYvIHnQVZMOvjEx13g+ckYZiv51sAMARJdsZCqzMzd8FfFXS6cBeEbEmxb8RWCeprqfwrHk5gVhf09kPciDZL+S7yVog7wLulDQA+B5wbEQcSHaef0CN214CjJC0U7dHnbUYDiptlWyj/FhLm3Lzm9h8tkHAR3P9KCMiIv8kPYA15I5JRFxJ1opZA8yWdESu7g7AX7sQs/ViTiDW19xJdkpqVXpmxSpgEFkSuZPNX4zPpWd7VLz6qVREvEI2Iu+F6VRO58i0Hyup+ltgoqQdJf0N8OFUNhf4mKRd07r5ZPFrYBrwqzr/op8DfKGz30fS2DJ1/sjmFgtpYMClEfFdslFl35rKdwWei4j1dYzXmpgTiPU1C8iuvrq7pOzFiHguXbH0I7LWyRyyX/7b4mtkp3cekrQQ+CVQ+mCpB8ieJ38v2Wi9F0fEvIhYBJwL3CHp98C3S9a7LsU2Kw2TXg/fJHsE7YOSFqX5LaT+kEcl7ZuKjgMWptNebwEuT+WHA7+qU5zWC3g0XjN7DUkfBg6KiK9VqXM9cEZE/LHnIrNm4quwzOw1IuKGzlNt5aRTeDOdPFqbWyBmZlaI+0DMzKwQJxAzMyvECcTMzApxAjEzs0KcQMzMrJD/D1ccVKcoNbduAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEWCAYAAABIVsEJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAha0lEQVR4nO3dfZwcVZ3v8c+XkCcXIYREDCEhsGQjIJroiBdxVRAEWSVREdG9bkQw6op7d3kZSZYVXVzuRtmVdV8XHyIioCAPkYeo0SwQwF0BYTAhTxgJASFDgEAIIowJSX73jzoDlba7Z1Iz3dUz832/Xv3qqlOnqn5TSfevz6mqU4oIzMzMdtVuZQdgZmb9kxOImZkV4gRiZmaFOIGYmVkhTiBmZlaIE4iZmRXiBGLWAJL+UtKasuMwayQnEBtwJD0s6dgyY4iI/46IKY3avqTjJf1C0nOSNkq6XdJJjdqfWTVOIGYFSBpS4r5PBq4FLgf2B/YFzgXeW2BbkuTvASvE/3Fs0JC0m6Q5kh6U9LSkaySNzi2/VtLjkp5Nv+4Pyy27VNI3JS2S9DxwdGrpfE7S8rTO1ZJGpPrvkLQ+t37Numn55yVtkPSYpDMkhaSDq/wNAr4GfDkiLo6IZyNiR0TcHhGfSHW+JOkHuXUmpe3tnuZvk3S+pF8CLwCzJbVX7OcfJC1M08Ml/ZukRyQ9Ielbkkb28p/DBgAnEBtMPgvMAN4O7Ac8A1yUW/4zYDLwKuDXwBUV638EOB94JfA/qewU4ATgQOB1wMfq7L9qXUknAGcBxwIHA++os40pwARgQZ06PfFRYBbZ3/ItYIqkybnlHwGuTNPzgL8Apqb4xpO1eGyQcwKxweRTwDkRsT4itgBfAk7u+mUeEZdExHO5Za+XtFdu/Rsj4pfpF/8fU9l/RsRjEbEJ+DHZl2wtteqeAnwvIlZFxAtp37Xsk9439OxPrunStL9tEfEscCPwYYCUSF4DLEwtnlnAP0TEpoh4Dvi/wKm93L8NAE4gNpgcAFwvabOkzcD9wHZgX0lDJM1L3Vu/Bx5O64zJrf9olW0+npt+Adijzv5r1d2vYtvV9tPl6fQ+rk6dnqjcx5WkBELW+rghJbOxwCuAe3PH7eep3AY5JxAbTB4F3h0Ro3KvERHRQfalOZ2sG2kvYFJaR7n1GzV09Qayk+FdJtSpu4bs7/hAnTrPk33pd3l1lTqVf8tNwFhJU8kSSVf31VNAJ3BY7pjtFRH1EqUNEk4gNlANlTQi99qdrK//fEkHAEgaK2l6qv9KYAvZL/xXkHXTNMs1wGmSDpH0CuALtSpG9vyFs4AvSDpN0p7p4oC3Spqfqi0D3iZpYuqCm9tdABHxItmVXRcAo8kSChGxA/gOcKGkVwFIGi/p+KJ/rA0cTiA2UC0i++Xc9foS8HVgIfBfkp4D7gLenOpfDvwO6ABWp2VNERE/A/4TuBVYm9v3lhr1FwAfAj4OPAY8AfwL2XkMIuIm4GpgOXAv8JMehnIlWQvs2ojYlis/uyuu1L13M9nJfBvk5AdKmbUWSYcAK4HhFV/kZi3FLRCzFiDpfel+i72BrwA/dvKwVucEYtYaPgk8CTxIdmXYp8sNx6x77sIyM7NC3AIxM7NCdi87gGYaM2ZMTJo0qewwzMz6lXvvvfepiPiTm0cHVQKZNGkS7e3t3Vc0M7OXSPpdtXJ3YZmZWSFOIGZmVogTiJmZFeIEYmZmhTiBmJlZIYPqKiwr3w1LO7hg8Roe29zJfqNGMvv4KcyYNr7ssMwGpEZ/3pxArGluWNrB3OtW0PnidgA6Nncy97oVAE4iZn2sGZ83J5BBpswWwAWL17z0n7lL54vb+fyC5fzw7keaEoPZYLH0kc1s3b5jp7LOF7dzweI1TiCDXZFEUHYL4LHNnVXLK/+Tm1nv1fpc1focFuEE0qLqJYiiiaDsFsDQIbtV/U89ftRIrv7kkQ3fv9lgctS8JXRUSRb7jRrZZ/twAmlB3SWIoomg2n8maF4LYMLokTz01PPsyA0APXLoEGYf74fbmfW12cdP2el7BPr+8+YE0oK6SxBFE8GwFmgB+Coss+bo+lwN2KuwJJ1A9pzqIcDFETGvYvmFwNFp9hXAqyJiVFq2HViRlj0SESc1Jegm6O5cQdFEUNmygea3AGZMG++EYdYkjf68lZZAJA0BLgKOA9YD90haGBGru+pExD/k6n8WmJbbRGdETG1SuH2ip7++9xs1smoroytBFE0EzfhFYmaDR5ktkCOAtRGxDkDSVcB0YHWN+h8Gvtik2Prcrpz47q7vsjeJwC0AM+srZSaQ8cCjufn1wJurVZR0AHAgsCRXPEJSO7ANmBcRNzQozj6xqye+9xs1gnUbnyfIWh6VCcKJwMzK1l9Oop8KLIiI/DfwARHRIekgYImkFRHxYOWKkmYBswAmTpzYnGir2NV7IMbsMZwxewxn+tTxfOTN5cVtZlZLmQmkA5iQm98/lVVzKvCZfEFEdKT3dZJuIzs/8icJJCLmA/MB2traonJ5s3R3XsPMrL8pczTee4DJkg6UNIwsSSysrCTpNcDewJ25sr0lDU/TY4CjqH3upKluWNrBUfOWcOCcn3LUvCXcsDTLibOPn8LIoUN2qut7IMysPyutBRIR2ySdCSwmu4z3kohYJek8oD0iupLJqcBVEZFvPRwCfFvSDrIkOC9/9VZZenKi/PMLlrN1+46q5zXMzPoT7fy9PLC1tbVFe3t7w7Zfa+iAYUN2Y9rEUQCs3vB7Dh23p7utzKzfkHRvRLRVlvuBUn2oJyfKDx23J9OnutVhZv1ff7kKq1/wiXIzG0zcAulDPlFuZoOJWyB9yCfKzWwwcQLpYzOmjX/pznJ3W5nZQOYE0gsemtzMBjMnkILq3fNhZjYY+CR6QfUGR1y94fclRWVm1jxOIAXVu+fD93qY2WDgLqyCfM+HmQ12boEU5Hs+zGywcwukIN/zYWaDnRNIL/ieDzMbzNyFZWZmhTiBmJlZIU4gZmZWiBOImZkVUmoCkXSCpDWS1kqaU2X5xyRtlLQsvc7ILZsp6YH0mtncyM3MrLSrsCQNAS4CjgPWA/dIWljl2eZXR8SZFeuOBr4ItAEB3JvWfaYJoZuZGeW2QI4A1kbEuojYClwFTO/huscDN0XEppQ0bgJOaFCcZmZWRZkJZDzwaG5+fSqr9AFJyyUtkDRhF9dF0ixJ7ZLaN27c2Bdxm5kZrX8S/cfApIh4HVkr47Jd3UBEzI+ItohoGzt2bJ8HaGY2WJWZQDqACbn5/VPZSyLi6YjYkmYvBt7Y03XNzKyxykwg9wCTJR0oaRhwKrAwX0HSuNzsScD9aXox8C5Je0vaG3hXKjMzsyYp7SqsiNgm6UyyL/4hwCURsUrSeUB7RCwE/k7SScA2YBPwsbTuJklfJktCAOdFxKam/xFmZoNYqYMpRsQiYFFF2bm56bnA3BrrXgJc0tAAzcysplY/iW5mZi3KCcTMzApxAjEzs0KcQMzMrBAnEDMzK8QJxMzMCnECMTOzQpxAzMysECcQMzMrxAnEzMwKcQIxM7NCnEDMzKwQJxAzMyvECcTMzApxAjEzs0KcQMzMrJBSE4ikEyStkbRW0pwqy8+StFrSckm3SDogt2y7pGXptbByXTMza6zSnkgoaQhwEXAcsB64R9LCiFidq7YUaIuIFyR9Gvgq8KG0rDMipjYzZjMze1mZLZAjgLURsS4itgJXAdPzFSLi1oh4Ic3eBezf5BjNzKyGMhPIeODR3Pz6VFbL6cDPcvMjJLVLukvSjForSZqV6rVv3LixVwGbmdnLSuvC2hWS/jfQBrw9V3xARHRIOghYImlFRDxYuW5EzAfmA7S1tUVTAjYzGwTKbIF0ABNy8/unsp1IOhY4BzgpIrZ0lUdER3pfB9wGTGtksGZmtrMyE8g9wGRJB0oaBpwK7HQ1laRpwLfJkseTufK9JQ1P02OAo4D8yXczM2uw0rqwImKbpDOBxcAQ4JKIWCXpPKA9IhYCFwB7ANdKAngkIk4CDgG+LWkHWRKcV3H1lpmZNVip50AiYhGwqKLs3Nz0sTXWuwM4vLHRmZlZPb4T3czMCukXV2G1khuWdnDB4jU8trmT/UaNZMTQ3Rizx/CywzIzazonkF1ww9IO5l63gs4XtwPQsbmT3VRyUGZmJXEX1i64YPGal5JHlx0Bj27qLCkiM7PyOIHsgsc2V08UW7fvaHIkZmblcwLZBfuNGlm1fHyNcjOzgaxuApG0p6Q/r1L+usaF1LpmHz+FkUOH7FQ2cugQZh8/paSIzMzKUzOBSDoF+A3wI0mrJL0pt/jSRgfWimZMG8+/vv9whg3JDtv4USP51/cfzoxp9caANDMbmOpdhfWPwBsjYoOkI4DvS5obEdcDg/baoxnTxvPDux8B4OpPHllyNGZm5amXQIZExAaAiLhb0tHATyRNADyqrZnZIFfvHMhz+fMfKZm8g+yhT4c1OC4zM2tx9Vogn6aiqyoinpN0AnBKQ6MyM7OWV7MFEhH3AQ9JurWi/MWIuKLhkZmZWUurexlvRGwHdkjaq0nxmJlZP9GTsbD+AKyQdBPwfFdhRPxdw6IyM7OW15MEcl16mZmZvaTbBBIRlzVq5+mE/NfJnkh4cUTMq1g+HLgceCPwNPChiHg4LZsLnA5sB/4uIhY3Kk4zM/tTpY2FJWkIcBHwbuBQ4MOSDq2odjrwTEQcDFwIfCWteyjZM9QPA04AvpG2Z2ZmTVLmYIpHAGsjYl1EbAWuIrvHJG860NUCWgC8U9nD0acDV0XEloh4CFibtmdmZk1SZgIZDzyam1+fyqrWiYhtwLPAPj1c18zMGqjbcyCS/gKYDRyQrx8RxzQwrj4jaRYwC2DixIklR2NmNnD05Cqsa4FvAd8hO2HdVzqACbn5/VNZtTrrJe0O7EV2Mr0n6wIQEfOB+QBtbW0ew8vMrI/0JIFsi4hvNmDf9wCTJR1I9uV/KvCRijoLgZnAncDJwJKICEkLgSslfQ3YD5gM3N2AGM3MrIaeJJAfS/pb4HpgS1dhRGzqzY4jYpukM4HFZJfxXhIRqySdB7RHxELgu2TDyK8FNpElGVK9a4DVwDbgM+mueTMza5KeJJCZ6X12riyAg3q784hYBCyqKDs3N/1H4IM11j0fOL+3MZiZWTE9uZHwwGYEYmZm/UtPrsIaSja0+9tS0W3AtyPixQbGZWZmLa4nXVjfBIYC30jzH01lZzQqKDMza309SSBviojX5+aXSLqvUQGZmVn/0JM70bfnH20r6SD69n4QMzPrh3rSApkN3CppHdkjbg8ATmtoVGZm1vJ6chXWLZImA1NS0ZqI2FJvHTMzG/hqJhBJx0TEEknvr1h0sCQiwg+ZMjMbxOq1QN4OLAHeW2VZ4KcUmpkNajUTSER8MU2el5658ZI0fpWZmQ1iPbkK60dVyhb0dSBmZta/1DsH8hqyR8buVXEeZE9gRKMDMzOz1lbvHMgU4D3AKHY+D/Ic8IkGxmRmZv1AvXMgNwI3SjoyIu5sYkxmZtYP9ORGwqWSPkPWnfVS11VEfLxhUZmZWcvryUn07wOvBo4Hbid7fOxzjQzKzMxaX08SyMER8QXg+Yi4DPgr4M2NDcvMzFpdTxJI13M/Nkt6LbAX8Kre7FTSaEk3SXogve9dpc5USXdKWiVpuaQP5ZZdKukhScvSa2pv4jEzs13XkwQyP33BfwFYSPYc8q/2cr9zgFsiYjJwS5qv9ALwNxFxGHAC8B+SRuWWz46Iqem1rJfxmJnZLurJYIoXp8nb6YPnoCfTgXek6cvInnJ4dsV+f5ubfkzSk8BYYHMfxWBmZr1Q70bCs+qtGBFf68V+942IDWn6cWDfepUlHQEMAx7MFZ8v6VxSC6bWCMGSZgGzACZOnNiLkM3MLK9eC+SV6X0K8Cay7ivIbiq8u7sNS7qZ7OqtSufkZyIiJEWd7YwjuxJsZkTsSMVzyRLPMGA+WevlvGrrR8T8VIe2traa+zEzs11T70bCfwaQ9AvgDRHxXJr/EvDT7jYcEcfWWibpCUnjImJDShBP1qi3Z9rXORFxV27bXa2XLZK+B3yuu3jMzKxv9eQk+r7A1tz8VrrpcuqBhcDMND0TuLGygqRhwPXA5RGxoGLZuPQuYAawspfxmJnZLurJneiXA3dLuj7NzwAu7eV+5wHXSDod+B1wCoCkNuBTEXFGKnsbsI+kj6X1PpauuLpC0liyR+wuAz7Vy3jMzGwX9eQqrPMl/Qz4y1R0WkQs7c1OI+Jp4J1VytuBM9L0D4Af1Fj/mN7s38zMeq/eVVh7RsTvJY0GHk6vrmWjI2JT48MzM7NWVa8FciXZcO73kj3CtovSfF/dE2JmZv1Qvauw3pPe/fhaMzP7E/W6sN5Qb8WI+HXfh2NmZv1FvS6sf6+zLACfyDYzG8TqdWEd3cxAzMysf+nJfSCkYdwPZecnEl7eqKDMzKz1dZtAJH2RbOTcQ4FFwLuB/yG7wdDMzAapngxlcjLZTX+PR8RpwOvJHiplZmaDWE8SSGcaBXdbGtzwSWBCY8MyM7NW15NzIO3pSYDfIbup8A/AnY0MyszMWl+9+0AuAq6MiL9NRd+S9HNgz4hY3pTozMysZdVrgfwW+Lc0dPo1wA97O4iimZkNHDXPgUTE1yPiSODtwNPAJZJ+I+mLkv6iaRGamVlL6vYkekT8LiK+EhHTgA+TPQ/k/kYHZmZmra3bBCJpd0nvlXQF8DNgDfD+hkdmZmYtrd5J9OPIWhwnAncDVwGzIuL53u40PWPkamAS2XNGTomIZ6rU2w6sSLOPRMRJqfzAFM8+ZFeGfTQitlaub2ZmjVOvBTIXuAM4JCJOiogr+yJ5JHOAWyJiMnBLmq+mMyKmptdJufKvABdGxMHAM8DpfRSXmZn1UL2T6MdExMXVWgZ9YDpwWZq+jOy8So9IEtlIwAuKrG9mZn2jJ3eiN8K+EbEhTT8O7Fuj3ghJ7ZLukjQjle0DbI6IbWl+PTC+1o4kzUrbaN+4cWNfxG5mZvRwNN4iJN0MvLrKonPyMxERkqJKPYADIqJD0kHAEkkrgGd3JY6ImA/MB2hra6u1HzMz20UNSyARcWytZZKekDQuIjakGxWfrLGNjvS+TtJtwDTgR8AoSbunVsj+QEef/wFmZlZXWV1YC4GZaXomcGNlBUl7SxqepscARwGrIyKAW8lGCa65vpmZNVZZCWQecJykB4Bj0zyS2iRdnOocQjaQ431kCWNeRKxOy84GzpK0luycyHebGr2ZmTWuC6ueiHia7BkjleXtwBlp+g7g8BrrrwOOaGSMZmZWX1ktEDMz6+ecQMzMrBAnEDMzK8QJxMzMCnECMTOzQpxAzMysECcQMzMrxAnEzMwKcQIxM7NCnEDMzKwQJxAzMyvECcTMzApxAjEzs0KcQMzMrBAnEDMzK8QJxMzMCnECMTOzQkpJIJJGS7pJ0gPpfe8qdY6WtCz3+qOkGWnZpZIeyi2b2uy/wcxssCurBTIHuCUiJgO3pPmdRMStETE1IqYCxwAvAP+VqzK7a3lELGtCzGZmllNWApkOXJamLwNmdFP/ZOBnEfFCI4MyM7OeKyuB7BsRG9L048C+3dQ/FfhhRdn5kpZLulDS8ForSpolqV1S+8aNG3sRspmZ5TUsgUi6WdLKKq/p+XoREUDU2c444HBgca54LvAa4E3AaODsWutHxPyIaIuItrFjx/bmTzIzs5zdG7XhiDi21jJJT0gaFxEbUoJ4ss6mTgGuj4gXc9vuar1skfQ94HN9ErSZmfVYWV1YC4GZaXomcGOduh+movsqJR0kiez8ycq+D9HMzOopK4HMA46T9ABwbJpHUpuki7sqSZoETABur1j/CkkrgBXAGOBfmhG0mZm9rGFdWPVExNPAO6uUtwNn5OYfBsZXqXdMI+MzM7Pu+U50MzMrxAnEzMwKcQIxM7NCnEDMzKwQJxAzMyvECcTMzApxAjEzs0KcQMzMrBAnEDMzK8QJxMzMCnECMTOzQpxAzMysECcQMzMrxAnEzMwKcQIxM7NCnEDMzKyQUhKIpA9KWiVph6S2OvVOkLRG0lpJc3LlB0r6VSq/WtKw5kRuZmZdymqBrATeD/yiVgVJQ4CLgHcDhwIflnRoWvwV4MKIOBh4Bji9seGamVmlUhJIRNwfEWu6qXYEsDYi1kXEVuAqYLokAccAC1K9y4AZDQvWzMyqauVzIOOBR3Pz61PZPsDmiNhWUV6VpFmS2iW1b9y4sWHBmpkNNrs3asOSbgZeXWXRORFxY6P2Wyki5gPzAdra2qJZ+zUzG+galkAi4thebqIDmJCb3z+VPQ2MkrR7aoV0lZuZWRO1chfWPcDkdMXVMOBUYGFEBHArcHKqNxNoWovGzMwyZV3G+z5J64EjgZ9KWpzK95O0CCC1Ls4EFgP3A9dExKq0ibOBsyStJTsn8t1m/w1mZoNdw7qw6omI64Hrq5Q/BpyYm18ELKpSbx3ZVVpmZlaSVu7CMjOzFuYEYmZmhTiBmJlZIU4gZmZWSCkn0fuTG5Z2cMHiNTy2uZP9Ro1k9vFTyg7JzKwluAVSxw1LO5h73Qo6NncSQMfmTuZet4Kn/rCl7NDMzErnBFLHBYvX0Pni9p3KOl/czrqNz5cUkZlZ63ACqeOxzZ1VywOYPrXm+I1mZoOCE0gd+40aWbV8/KiRfOTNE5scjZlZa3ECqWP28VMYOXTITmUjhw7xiXQzM3wVVl0zpmXdVJVXYXWVm5kNZk4g3ZgxbbwThplZFe7CMjOzQpxAzMysECcQMzMrxAnEzMwKcQIxM7NClD1ifHCQtBH43S6uNgZ4qgHh9AXHtutaNS5o3dhaNS5wbEUUieuAiBhbWTioEkgRktojoq3sOKpxbLuuVeOC1o2tVeMCx1ZEX8blLiwzMyvECcTMzApxAune/LIDqMOx7bpWjQtaN7ZWjQscWxF9FpfPgZiZWSFugZiZWSFOIGZmVogTSB2STpC0RtJaSXPKjidP0sOSVkhaJqm9xDgukfSkpJW5stGSbpL0QHrfu4Vi+5KkjnTclkk6sYS4Jki6VdJqSask/Z9UXvpxqxNbqcdN0ghJd0u6L8X1z6n8QEm/Sp/RqyUNa2Zc3cR2qaSHcsdsarNjS3EMkbRU0k/SfN8ds4jwq8oLGAI8CBwEDAPuAw4tO65cfA8DY1ogjrcBbwBW5sq+CsxJ03OAr7RQbF8CPlfyMRsHvCFNvxL4LXBoKxy3OrGVetwAAXuk6aHAr4D/BVwDnJrKvwV8uoViuxQ4ucz/aymms4ArgZ+k+T47Zm6B1HYEsDYi1kXEVuAqYHrJMbWciPgFsKmieDpwWZq+DJjRzJi61IitdBGxISJ+naafA+4HxtMCx61ObKWKzB/S7ND0CuAYYEEqL+uY1YqtdJL2B/4KuDjNiz48Zk4gtY0HHs3Nr6cFPkg5AfyXpHslzSo7mAr7RsSGNP04sG+ZwVRxpqTlqYurlO61LpImAdPIfrW21HGriA1KPm6pK2YZ8CRwE1kPweaI2JaqlPYZrYwtIrqO2fnpmF0oaXgJof0H8HlgR5rfhz48Zk4g/ddbI+INwLuBz0h6W9kBVRNZO7klfo0l3wT+HJgKbAD+vaxAJO0B/Aj4+4j4fX5Z2cetSmylH7eI2B4RU4H9yXoIXtPsGGqpjE3Sa4G5ZDG+CRgNnN3MmCS9B3gyIu5t1D6cQGrrACbk5vdPZS0hIjrS+5PA9WQfqFbxhKRxAOn9yZLjeUlEPJE+7DuA71DScZM0lOwL+oqIuC4Vt8RxqxZbqxy3FMtm4FbgSGCUpK5Hc5f+Gc3FdkLqDoyI2AJ8j+Yfs6OAkyQ9TNYFfwzwdfrwmDmB1HYPMDldsTAMOBVYWHJMAEj6M0mv7JoG3gWsrL9WUy0EZqbpmcCNJcayk64v6OR9lHDcUj/0d4H7I+JruUWlH7dasZV93CSNlTQqTY8EjiM7P3MrcHKqVtYxqxbbb3I/BkR2nqGpxywi5kbE/hExiez7a0lE/DV9eczKvkKglV/AiWRXoTwInFN2PLm4DiK7Kuw+YFWZsQE/JOvSeJGsP/V0sn7WW4AHgJuB0S0U2/eBFcBysi/scSXE9Vay7qnlwLL0OrEVjlud2Eo9bsDrgKVp/yuBc1P5QcDdwFrgWmB4CcesVmxL0jFbCfyAdKVWGS/gHbx8FVafHTMPZWJmZoW4C8vMzApxAjEzs0KcQMzMrBAnEDMzK8QJxMzMCnECsQEjDRfx97n5xZIuzs3/u6Sz6qx/qaST0/Rtktqq1BkqaV4aMffXku6U9O607GFJYwrE/dJ+ayy/KI3mulpSZ25015MlLeq6B6EvSRrXNXprjeXDJP0id0OaDUJOIDaQ/BJ4C4Ck3YAxwGG55W8B7ujlPr5MNmLtayMbSmYG2ai1DRMRn4lsmIwTgQcjYmp6LYiIEyO7+7mvnUV2x3mtmLaS3bPyoQbs2/oJJxAbSO4gG94CssSxEnhO0t5pILtDgF9LOlfSPZJWSpqf7hTulqRXAJ8APhvZ8BRENsTHNVXqnpW2v7KiVfQ3aXC9+yR9v8p6X04tkiE9jOlhSWMkTZL0m7TubyVdIelYSb9MraUjUv0/S4Mh3q3sGRG1Rpj+APDztM5hqf6yFPvkVOcG4K97EqcNTG5+2oAREY9J2iZpIllr406ykUaPBJ4FVkTEVkn/LyLOA0hf4u8BftyDXRwMPBIVAx9WkvRG4DTgzWTPiviVpNuBrcA/AW+JiKckja5Y7wKy1sxpUewO34OBDwIfJxuK5yNkd5afBPwjWWvpHLIhLT6eur7ulnRzRDyfi+NA4JmuJAl8Cvh6RFyRhvXpSm4ryQYKtEHKLRAbaO4gSx5dCeTO3PwvU52jlT2RbQXZAHOHVdtQL7wVuD4ino/sORHXAX+Z9nVtRDwFEBH5Z5V8AdgrIj5VMHkAPBQRKyIb8HAVcEva1gpgUqrzLmCOsqHHbwNGABMrtjMO2JibvxP4R0lnAwdERGeKfzuwtWtcNht8nEBsoOk6D3I42S/ku8haIG8B7pA0AvgG2ZPiDifr5x/Rw22vBSZK2rPPo85aDG+sbJXsoi256R25+R283Nsg4AO58ygTI+L+iu10kjsmEXElWSumE1gk6Zhc3eHAH3sRs/VjTiA20NxB1iW1KbLhxzcBo8iSyB28/MX4lLJnXtS8+qlSRLxANlLt11NXTtdIrB+sqPrfwAxJr0ijJb8vlS0BPihpn7RuPln8HJgH/LTBv+gXA5/tOu8jaVqVOr/l5RYLkg4C1kXEf5KN3Pq6VL4P8FREvNjAeK2FOYHYQLOC7OqruyrKno2Ip9IVS98ha50sJvvlvyv+iax7Z7WklcBPgMqHQf2a7HnYd5M9ze/iiFgaEauA84HbJd0HfK1ivWtTbAvTsOCN8GWyR64ul7Qqze8knQ95UNLBqegUYGXq9notcHkqPxr4aYPitH7Ao/Ga2Z+Q9D7gjRHxT3XqXAfMiYjfNi8yayW+CsvM/kREXN/V1VZN6sK7wcljcHMLxMzMCvE5EDMzK8QJxMzMCnECMTOzQpxAzMysECcQMzMr5P8D8vDfRGq9BpUAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -536,15 +852,40 @@ "execution_count": 15, "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n" + ] + }, { "data": { + "text/html": [ + "
XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1,\n",
+       "             colsample_bynode=1, colsample_bytree=1, gamma=0, gpu_id=-1,\n",
+       "             importance_type='gain', interaction_constraints='',\n",
+       "             learning_rate=0.300000012, max_delta_step=0, max_depth=6,\n",
+       "             min_child_weight=1, missing=nan, monotone_constraints='()',\n",
+       "             n_estimators=100, n_jobs=2, num_parallel_tree=1, random_state=0,\n",
+       "             reg_alpha=0, reg_lambda=1, scale_pos_weight=1, subsample=1,\n",
+       "             tree_method='exact', validate_parameters=1, verbosity=None)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], "text/plain": [ "XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1,\n", " colsample_bynode=1, colsample_bytree=1, gamma=0, gpu_id=-1,\n", " importance_type='gain', interaction_constraints='',\n", " learning_rate=0.300000012, max_delta_step=0, max_depth=6,\n", " min_child_weight=1, missing=nan, monotone_constraints='()',\n", - " n_estimators=100, n_jobs=32, num_parallel_tree=1, random_state=0,\n", + " n_estimators=100, n_jobs=2, num_parallel_tree=1, random_state=0,\n", " reg_alpha=0, reg_lambda=1, scale_pos_weight=1, subsample=1,\n", " tree_method='exact', validate_parameters=1, verbosity=None)" ] @@ -598,642 +939,890 @@ "name": "stderr", "output_type": "stream", "text": [ - "[flaml.automl: 11-23 01:30:27] {1861} INFO - task = regression\n", - "[flaml.automl: 11-23 01:30:27] {1863} INFO - Data split method: uniform\n", - "[flaml.automl: 11-23 01:30:27] {1867} INFO - Evaluation method: holdout\n", - "[flaml.automl: 11-23 01:30:27] {1933} INFO - Minimizing error metric: 1-r2\n", - "[flaml.automl: 11-23 01:30:27] {1985} INFO - List of ML learners in AutoML Run: ['my_xgb1', 'my_xgb2']\n", - "[flaml.automl: 11-23 01:30:27] {2223} INFO - iteration 0, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:27] {2337} INFO - Estimated sufficient time budget=341s. Estimated necessary time budget=0s.\n", - "[flaml.automl: 11-23 01:30:27] {2417} INFO - at 0.1s,\testimator my_xgb1's best error=1.7590,\tbest estimator my_xgb1's best error=1.7590\n", - "[flaml.automl: 11-23 01:30:27] {2223} INFO - iteration 1, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:27] {2417} INFO - at 0.1s,\testimator my_xgb1's best error=0.7534,\tbest estimator my_xgb1's best error=0.7534\n", - "[flaml.automl: 11-23 01:30:27] {2223} INFO - iteration 2, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:27] {2417} INFO - at 0.1s,\testimator my_xgb1's best error=0.7534,\tbest estimator my_xgb1's best error=0.7534\n", - "[flaml.automl: 11-23 01:30:27] {2223} INFO - iteration 3, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:27] {2417} INFO - at 0.1s,\testimator my_xgb1's best error=0.7534,\tbest estimator my_xgb1's best error=0.7534\n", - "[flaml.automl: 11-23 01:30:27] {2223} INFO - iteration 4, current learner my_xgb2\n", - "[flaml.automl: 11-23 01:30:27] {2417} INFO - at 0.2s,\testimator my_xgb2's best error=4.1611,\tbest estimator my_xgb1's best error=0.7534\n", - "[flaml.automl: 11-23 01:30:27] {2223} INFO - iteration 5, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:27] {2417} INFO - at 0.2s,\testimator my_xgb1's best error=0.7534,\tbest estimator my_xgb1's best error=0.7534\n", - "[flaml.automl: 11-23 01:30:27] {2223} INFO - iteration 6, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:27] {2417} INFO - at 0.2s,\testimator my_xgb1's best error=0.7534,\tbest estimator my_xgb1's best error=0.7534\n", - "[flaml.automl: 11-23 01:30:27] {2223} INFO - iteration 7, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:27] {2417} INFO - at 0.2s,\testimator my_xgb1's best error=0.7534,\tbest estimator my_xgb1's best error=0.7534\n", - "[flaml.automl: 11-23 01:30:27] {2223} INFO - iteration 8, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:27] {2417} INFO - at 0.3s,\testimator my_xgb1's best error=0.4908,\tbest estimator my_xgb1's best error=0.4908\n", - "[flaml.automl: 11-23 01:30:27] {2223} INFO - iteration 9, current learner my_xgb2\n", - "[flaml.automl: 11-23 01:30:27] {2417} INFO - at 0.3s,\testimator my_xgb2's best error=4.1611,\tbest estimator my_xgb1's best error=0.4908\n", - "[flaml.automl: 11-23 01:30:27] {2223} INFO - iteration 10, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:27] {2417} INFO - at 0.3s,\testimator my_xgb1's best error=0.4908,\tbest estimator my_xgb1's best error=0.4908\n", - "[flaml.automl: 11-23 01:30:27] {2223} INFO - iteration 11, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:27] {2417} INFO - at 0.4s,\testimator my_xgb1's best error=0.4908,\tbest estimator my_xgb1's best error=0.4908\n", - "[flaml.automl: 11-23 01:30:27] {2223} INFO - iteration 12, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:27] {2417} INFO - at 0.4s,\testimator my_xgb1's best error=0.4908,\tbest estimator my_xgb1's best error=0.4908\n", - "[flaml.automl: 11-23 01:30:27] {2223} INFO - iteration 13, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:27] {2417} INFO - at 0.4s,\testimator my_xgb1's best error=0.4908,\tbest estimator my_xgb1's best error=0.4908\n", - "[flaml.automl: 11-23 01:30:27] {2223} INFO - iteration 14, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:27] {2417} INFO - at 0.5s,\testimator my_xgb1's best error=0.4908,\tbest estimator my_xgb1's best error=0.4908\n", - "[flaml.automl: 11-23 01:30:27] {2223} INFO - iteration 15, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:27] {2417} INFO - at 0.5s,\testimator my_xgb1's best error=0.4908,\tbest estimator my_xgb1's best error=0.4908\n", - "[flaml.automl: 11-23 01:30:27] {2223} INFO - iteration 16, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:27] {2417} INFO - at 0.5s,\testimator my_xgb1's best error=0.4908,\tbest estimator my_xgb1's best error=0.4908\n", - "[flaml.automl: 11-23 01:30:27] {2223} INFO - iteration 17, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:27] {2417} INFO - at 0.6s,\testimator my_xgb1's best error=0.4908,\tbest estimator my_xgb1's best error=0.4908\n", - "[flaml.automl: 11-23 01:30:27] {2223} INFO - iteration 18, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:27] {2417} INFO - at 0.6s,\testimator my_xgb1's best error=0.4908,\tbest estimator my_xgb1's best error=0.4908\n", - "[flaml.automl: 11-23 01:30:27] {2223} INFO - iteration 19, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:27] {2417} INFO - at 0.6s,\testimator my_xgb1's best error=0.4908,\tbest estimator my_xgb1's best error=0.4908\n", - "[flaml.automl: 11-23 01:30:27] {2223} INFO - iteration 20, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:27] {2417} INFO - at 0.7s,\testimator my_xgb1's best error=0.4908,\tbest estimator my_xgb1's best error=0.4908\n", - "[flaml.automl: 11-23 01:30:27] {2223} INFO - iteration 21, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:27] {2417} INFO - at 0.7s,\testimator my_xgb1's best error=0.4908,\tbest estimator my_xgb1's best error=0.4908\n", - "[flaml.automl: 11-23 01:30:27] {2223} INFO - iteration 22, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:27] {2417} INFO - at 0.8s,\testimator my_xgb1's best error=0.4908,\tbest estimator my_xgb1's best error=0.4908\n", - "[flaml.automl: 11-23 01:30:27] {2223} INFO - iteration 23, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:27] {2417} INFO - at 0.8s,\testimator my_xgb1's best error=0.4908,\tbest estimator my_xgb1's best error=0.4908\n", - "[flaml.automl: 11-23 01:30:27] {2223} INFO - iteration 24, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:27] {2417} INFO - at 0.8s,\testimator my_xgb1's best error=0.4908,\tbest estimator my_xgb1's best error=0.4908\n", - "[flaml.automl: 11-23 01:30:27] {2223} INFO - iteration 25, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:27] {2417} INFO - at 0.9s,\testimator my_xgb1's best error=0.4842,\tbest estimator my_xgb1's best error=0.4842\n", - "[flaml.automl: 11-23 01:30:27] {2223} INFO - iteration 26, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:28] {2417} INFO - at 0.9s,\testimator my_xgb1's best error=0.4842,\tbest estimator my_xgb1's best error=0.4842\n", - "[flaml.automl: 11-23 01:30:28] {2223} INFO - iteration 27, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:28] {2417} INFO - at 1.0s,\testimator my_xgb1's best error=0.4842,\tbest estimator my_xgb1's best error=0.4842\n", - "[flaml.automl: 11-23 01:30:28] {2223} INFO - iteration 28, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:28] {2417} INFO - at 1.0s,\testimator my_xgb1's best error=0.4842,\tbest estimator my_xgb1's best error=0.4842\n", - "[flaml.automl: 11-23 01:30:28] {2223} INFO - iteration 29, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:28] {2417} INFO - at 1.0s,\testimator my_xgb1's best error=0.4842,\tbest estimator my_xgb1's best error=0.4842\n", - "[flaml.automl: 11-23 01:30:28] {2223} INFO - iteration 30, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:28] {2417} INFO - at 1.1s,\testimator my_xgb1's best error=0.4842,\tbest estimator my_xgb1's best error=0.4842\n", - "[flaml.automl: 11-23 01:30:28] {2223} INFO - iteration 31, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:28] {2417} INFO - at 1.2s,\testimator my_xgb1's best error=0.4842,\tbest estimator my_xgb1's best error=0.4842\n", - "[flaml.automl: 11-23 01:30:28] {2223} INFO - iteration 32, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:28] {2417} INFO - at 1.2s,\testimator my_xgb1's best error=0.4842,\tbest estimator my_xgb1's best error=0.4842\n", - "[flaml.automl: 11-23 01:30:28] {2223} INFO - iteration 33, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:28] {2417} INFO - at 1.3s,\testimator my_xgb1's best error=0.4836,\tbest estimator my_xgb1's best error=0.4836\n", - "[flaml.automl: 11-23 01:30:28] {2223} INFO - iteration 34, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:28] {2417} INFO - at 1.3s,\testimator my_xgb1's best error=0.4836,\tbest estimator my_xgb1's best error=0.4836\n", - "[flaml.automl: 11-23 01:30:28] {2223} INFO - iteration 35, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:28] {2417} INFO - at 1.3s,\testimator my_xgb1's best error=0.4836,\tbest estimator my_xgb1's best error=0.4836\n", - "[flaml.automl: 11-23 01:30:28] {2223} INFO - iteration 36, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:28] {2417} INFO - at 1.4s,\testimator my_xgb1's best error=0.4836,\tbest estimator my_xgb1's best error=0.4836\n", - "[flaml.automl: 11-23 01:30:28] {2223} INFO - iteration 37, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:28] {2417} INFO - at 1.4s,\testimator my_xgb1's best error=0.4836,\tbest estimator my_xgb1's best error=0.4836\n", - "[flaml.automl: 11-23 01:30:28] {2223} INFO - iteration 38, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:28] {2417} INFO - at 1.5s,\testimator my_xgb1's best error=0.4836,\tbest estimator my_xgb1's best error=0.4836\n", - "[flaml.automl: 11-23 01:30:28] {2223} INFO - iteration 39, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:28] {2417} INFO - at 1.5s,\testimator my_xgb1's best error=0.4836,\tbest estimator my_xgb1's best error=0.4836\n", - "[flaml.automl: 11-23 01:30:28] {2223} INFO - iteration 40, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:28] {2417} INFO - at 1.6s,\testimator my_xgb1's best error=0.4836,\tbest estimator my_xgb1's best error=0.4836\n", - "[flaml.automl: 11-23 01:30:28] {2223} INFO - iteration 41, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:28] {2417} INFO - at 1.6s,\testimator my_xgb1's best error=0.4836,\tbest estimator my_xgb1's best error=0.4836\n", - "[flaml.automl: 11-23 01:30:28] {2223} INFO - iteration 42, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:28] {2417} INFO - at 1.6s,\testimator my_xgb1's best error=0.4836,\tbest estimator my_xgb1's best error=0.4836\n", - "[flaml.automl: 11-23 01:30:28] {2223} INFO - iteration 43, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:28] {2417} INFO - at 1.7s,\testimator my_xgb1's best error=0.4836,\tbest estimator my_xgb1's best error=0.4836\n", - "[flaml.automl: 11-23 01:30:28] {2223} INFO - iteration 44, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:28] {2417} INFO - at 1.7s,\testimator my_xgb1's best error=0.4836,\tbest estimator my_xgb1's best error=0.4836\n", - "[flaml.automl: 11-23 01:30:28] {2223} INFO - iteration 45, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:28] {2417} INFO - at 1.8s,\testimator my_xgb1's best error=0.4836,\tbest estimator my_xgb1's best error=0.4836\n", - "[flaml.automl: 11-23 01:30:28] {2223} INFO - iteration 46, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:28] {2417} INFO - at 1.8s,\testimator my_xgb1's best error=0.4836,\tbest estimator my_xgb1's best error=0.4836\n", - "[flaml.automl: 11-23 01:30:28] {2223} INFO - iteration 47, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:28] {2417} INFO - at 1.8s,\testimator my_xgb1's best error=0.4836,\tbest estimator my_xgb1's best error=0.4836\n", - "[flaml.automl: 11-23 01:30:28] {2223} INFO - iteration 48, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:28] {2417} INFO - at 1.8s,\testimator my_xgb1's best error=0.4836,\tbest estimator my_xgb1's best error=0.4836\n", - "[flaml.automl: 11-23 01:30:28] {2223} INFO - iteration 49, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:28] {2417} INFO - at 1.9s,\testimator my_xgb1's best error=0.4836,\tbest estimator my_xgb1's best error=0.4836\n", - "[flaml.automl: 11-23 01:30:28] {2223} INFO - iteration 50, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:28] {2417} INFO - at 1.9s,\testimator my_xgb1's best error=0.4836,\tbest estimator my_xgb1's best error=0.4836\n", - "[flaml.automl: 11-23 01:30:28] {2223} INFO - iteration 51, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:29] {2417} INFO - at 2.0s,\testimator my_xgb1's best error=0.4110,\tbest estimator my_xgb1's best error=0.4110\n", - "[flaml.automl: 11-23 01:30:29] {2223} INFO - iteration 52, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:29] {2417} INFO - at 2.0s,\testimator my_xgb1's best error=0.4110,\tbest estimator my_xgb1's best error=0.4110\n", - "[flaml.automl: 11-23 01:30:29] {2223} INFO - iteration 53, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:29] {2417} INFO - at 2.0s,\testimator my_xgb1's best error=0.4110,\tbest estimator my_xgb1's best error=0.4110\n", - "[flaml.automl: 11-23 01:30:29] {2223} INFO - iteration 54, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:29] {2417} INFO - at 2.1s,\testimator my_xgb1's best error=0.4110,\tbest estimator my_xgb1's best error=0.4110\n", - "[flaml.automl: 11-23 01:30:29] {2223} INFO - iteration 55, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:29] {2417} INFO - at 2.1s,\testimator my_xgb1's best error=0.4110,\tbest estimator my_xgb1's best error=0.4110\n", - "[flaml.automl: 11-23 01:30:29] {2223} INFO - iteration 56, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:29] {2417} INFO - at 2.2s,\testimator my_xgb1's best error=0.4110,\tbest estimator my_xgb1's best error=0.4110\n", - "[flaml.automl: 11-23 01:30:29] {2223} INFO - iteration 57, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:29] {2417} INFO - at 2.3s,\testimator my_xgb1's best error=0.4110,\tbest estimator my_xgb1's best error=0.4110\n", - "[flaml.automl: 11-23 01:30:29] {2223} INFO - iteration 58, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:29] {2417} INFO - at 2.3s,\testimator my_xgb1's best error=0.4110,\tbest estimator my_xgb1's best error=0.4110\n", - "[flaml.automl: 11-23 01:30:29] {2223} INFO - iteration 59, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:29] {2417} INFO - at 2.3s,\testimator my_xgb1's best error=0.4110,\tbest estimator my_xgb1's best error=0.4110\n", - "[flaml.automl: 11-23 01:30:29] {2223} INFO - iteration 60, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:29] {2417} INFO - at 2.4s,\testimator my_xgb1's best error=0.4110,\tbest estimator my_xgb1's best error=0.4110\n", - "[flaml.automl: 11-23 01:30:29] {2223} INFO - iteration 61, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:29] {2417} INFO - at 2.4s,\testimator my_xgb1's best error=0.4110,\tbest estimator my_xgb1's best error=0.4110\n", - "[flaml.automl: 11-23 01:30:29] {2223} INFO - iteration 62, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:29] {2417} INFO - at 2.5s,\testimator my_xgb1's best error=0.4110,\tbest estimator my_xgb1's best error=0.4110\n", - "[flaml.automl: 11-23 01:30:29] {2223} INFO - iteration 63, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:29] {2417} INFO - at 2.5s,\testimator my_xgb1's best error=0.4110,\tbest estimator my_xgb1's best error=0.4110\n", - "[flaml.automl: 11-23 01:30:29] {2223} INFO - iteration 64, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:29] {2417} INFO - at 2.6s,\testimator my_xgb1's best error=0.4110,\tbest estimator my_xgb1's best error=0.4110\n", - "[flaml.automl: 11-23 01:30:29] {2223} INFO - iteration 65, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:29] {2417} INFO - at 2.6s,\testimator my_xgb1's best error=0.4110,\tbest estimator my_xgb1's best error=0.4110\n", - "[flaml.automl: 11-23 01:30:29] {2223} INFO - iteration 66, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:29] {2417} INFO - at 2.6s,\testimator my_xgb1's best error=0.4110,\tbest estimator my_xgb1's best error=0.4110\n", - "[flaml.automl: 11-23 01:30:29] {2223} INFO - iteration 67, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:29] {2417} INFO - at 2.8s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:29] {2223} INFO - iteration 68, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:29] {2417} INFO - at 2.8s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:29] {2223} INFO - iteration 69, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:29] {2417} INFO - at 2.9s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:29] {2223} INFO - iteration 70, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:30] {2417} INFO - at 3.0s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:30] {2223} INFO - iteration 71, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:30] {2417} INFO - at 3.1s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:30] {2223} INFO - iteration 72, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:30] {2417} INFO - at 3.2s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:30] {2223} INFO - iteration 73, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:30] {2417} INFO - at 3.4s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:30] {2223} INFO - iteration 74, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:30] {2417} INFO - at 3.6s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:30] {2223} INFO - iteration 75, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:30] {2417} INFO - at 3.7s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:30] {2223} INFO - iteration 76, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:31] {2417} INFO - at 4.0s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:31] {2223} INFO - iteration 77, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:31] {2417} INFO - at 4.0s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:31] {2223} INFO - iteration 78, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:31] {2417} INFO - at 4.2s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:31] {2223} INFO - iteration 79, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:31] {2417} INFO - at 4.4s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:31] {2223} INFO - iteration 80, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:31] {2417} INFO - at 4.5s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:31] {2223} INFO - iteration 81, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:31] {2417} INFO - at 4.8s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:31] {2223} INFO - iteration 82, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:31] {2417} INFO - at 4.9s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:31] {2223} INFO - iteration 83, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:32] {2417} INFO - at 5.3s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:32] {2223} INFO - iteration 84, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:32] {2417} INFO - at 5.4s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:32] {2223} INFO - iteration 85, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:32] {2417} INFO - at 5.6s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:32] {2223} INFO - iteration 86, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:32] {2417} INFO - at 5.8s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:32] {2223} INFO - iteration 87, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:33] {2417} INFO - at 6.4s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:33] {2223} INFO - iteration 88, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:33] {2417} INFO - at 6.5s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:33] {2223} INFO - iteration 89, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:33] {2417} INFO - at 6.6s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:33] {2223} INFO - iteration 90, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:33] {2417} INFO - at 6.8s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:33] {2223} INFO - iteration 91, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:34] {2417} INFO - at 7.2s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:34] {2223} INFO - iteration 92, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:34] {2417} INFO - at 7.3s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:34] {2223} INFO - iteration 93, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:34] {2417} INFO - at 7.5s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:34] {2223} INFO - iteration 94, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:34] {2417} INFO - at 7.6s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:34] {2223} INFO - iteration 95, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:34] {2417} INFO - at 7.7s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:34] {2223} INFO - iteration 96, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:35] {2417} INFO - at 8.1s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:35] {2223} INFO - iteration 97, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:35] {2417} INFO - at 8.1s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:35] {2223} INFO - iteration 98, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:35] {2417} INFO - at 8.5s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:35] {2223} INFO - iteration 99, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:35] {2417} INFO - at 8.6s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:35] {2223} INFO - iteration 100, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:35] {2417} INFO - at 8.7s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:35] {2223} INFO - iteration 101, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:35] {2417} INFO - at 8.8s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:35] {2223} INFO - iteration 102, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:35] {2417} INFO - at 8.9s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:36] {2223} INFO - iteration 103, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:36] {2417} INFO - at 9.0s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:36] {2223} INFO - iteration 104, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:36] {2417} INFO - at 9.1s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:36] {2223} INFO - iteration 105, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:36] {2417} INFO - at 9.2s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:36] {2223} INFO - iteration 106, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:36] {2417} INFO - at 9.4s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:36] {2223} INFO - iteration 107, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:36] {2417} INFO - at 9.4s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:36] {2223} INFO - iteration 108, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:36] {2417} INFO - at 9.6s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:36] {2223} INFO - iteration 109, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:37] {2417} INFO - at 10.0s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", - "[flaml.automl: 11-23 01:30:37] {2223} INFO - iteration 110, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:37] {2417} INFO - at 10.1s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", - "[flaml.automl: 11-23 01:30:37] {2223} INFO - iteration 111, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:37] {2417} INFO - at 10.2s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", - "[flaml.automl: 11-23 01:30:37] {2223} INFO - iteration 112, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:37] {2417} INFO - at 10.3s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", - "[flaml.automl: 11-23 01:30:37] {2223} INFO - iteration 113, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:37] {2417} INFO - at 10.4s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", - "[flaml.automl: 11-23 01:30:37] {2223} INFO - iteration 114, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:37] {2417} INFO - at 10.4s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", - "[flaml.automl: 11-23 01:30:37] {2223} INFO - iteration 115, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:37] {2417} INFO - at 10.4s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", - "[flaml.automl: 11-23 01:30:37] {2223} INFO - iteration 116, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:37] {2417} INFO - at 10.5s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", - "[flaml.automl: 11-23 01:30:37] {2223} INFO - iteration 117, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:37] {2417} INFO - at 10.6s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", - "[flaml.automl: 11-23 01:30:37] {2223} INFO - iteration 118, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:37] {2417} INFO - at 10.7s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", - "[flaml.automl: 11-23 01:30:37] {2223} INFO - iteration 119, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:37] {2417} INFO - at 10.7s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", - "[flaml.automl: 11-23 01:30:37] {2223} INFO - iteration 120, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:37] {2417} INFO - at 10.8s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", - "[flaml.automl: 11-23 01:30:37] {2223} INFO - iteration 121, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:37] {2417} INFO - at 10.8s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", - "[flaml.automl: 11-23 01:30:37] {2223} INFO - iteration 122, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:38] {2417} INFO - at 11.0s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", - "[flaml.automl: 11-23 01:30:38] {2223} INFO - iteration 123, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:38] {2417} INFO - at 11.1s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", - "[flaml.automl: 11-23 01:30:38] {2223} INFO - iteration 124, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:38] {2417} INFO - at 11.2s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", - "[flaml.automl: 11-23 01:30:38] {2223} INFO - iteration 125, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:38] {2417} INFO - at 11.3s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", - "[flaml.automl: 11-23 01:30:38] {2223} INFO - iteration 126, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:38] {2417} INFO - at 11.4s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", - "[flaml.automl: 11-23 01:30:38] {2223} INFO - iteration 127, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:38] {2417} INFO - at 11.6s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", - "[flaml.automl: 11-23 01:30:38] {2223} INFO - iteration 128, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:38] {2417} INFO - at 11.6s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", - "[flaml.automl: 11-23 01:30:38] {2223} INFO - iteration 129, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:38] {2417} INFO - at 11.7s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", - "[flaml.automl: 11-23 01:30:38] {2223} INFO - iteration 130, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:38] {2417} INFO - at 11.8s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", - "[flaml.automl: 11-23 01:30:38] {2223} INFO - iteration 131, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:38] {2417} INFO - at 11.8s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", - "[flaml.automl: 11-23 01:30:38] {2223} INFO - iteration 132, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:38] {2417} INFO - at 11.9s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", - "[flaml.automl: 11-23 01:30:38] {2223} INFO - iteration 133, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:39] {2417} INFO - at 12.0s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:39] {2223} INFO - iteration 134, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:39] {2417} INFO - at 12.0s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:39] {2223} INFO - iteration 135, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:39] {2417} INFO - at 12.1s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:39] {2223} INFO - iteration 136, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:39] {2417} INFO - at 12.2s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:39] {2223} INFO - iteration 137, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:39] {2417} INFO - at 12.3s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:39] {2223} INFO - iteration 138, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:39] {2417} INFO - at 12.4s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:39] {2223} INFO - iteration 139, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:39] {2417} INFO - at 12.5s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:39] {2223} INFO - iteration 140, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:39] {2417} INFO - at 12.5s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:39] {2223} INFO - iteration 141, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:39] {2417} INFO - at 12.6s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:39] {2223} INFO - iteration 142, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:39] {2417} INFO - at 12.7s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:39] {2223} INFO - iteration 143, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:39] {2417} INFO - at 12.8s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:39] {2223} INFO - iteration 144, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:39] {2417} INFO - at 12.8s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:39] {2223} INFO - iteration 145, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:40] {2417} INFO - at 13.0s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:40] {2223} INFO - iteration 146, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:40] {2417} INFO - at 13.1s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:40] {2223} INFO - iteration 147, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:40] {2417} INFO - at 13.2s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:40] {2223} INFO - iteration 148, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:40] {2417} INFO - at 13.2s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:40] {2223} INFO - iteration 149, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:40] {2417} INFO - at 13.3s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:40] {2223} INFO - iteration 150, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:40] {2417} INFO - at 13.4s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:40] {2223} INFO - iteration 151, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:40] {2417} INFO - at 13.5s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:40] {2223} INFO - iteration 152, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:40] {2417} INFO - at 13.5s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:40] {2223} INFO - iteration 153, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:40] {2417} INFO - at 13.6s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:40] {2223} INFO - iteration 154, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:40] {2417} INFO - at 13.7s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:40] {2223} INFO - iteration 155, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:40] {2417} INFO - at 13.8s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:40] {2223} INFO - iteration 156, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:40] {2417} INFO - at 13.9s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:40] {2223} INFO - iteration 157, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:41] {2417} INFO - at 14.0s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:41] {2223} INFO - iteration 158, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:41] {2417} INFO - at 14.0s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:41] {2223} INFO - iteration 159, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:41] {2417} INFO - at 14.2s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:41] {2223} INFO - iteration 160, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:41] {2417} INFO - at 14.6s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:41] {2223} INFO - iteration 161, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:41] {2417} INFO - at 14.6s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:41] {2223} INFO - iteration 162, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:41] {2417} INFO - at 14.8s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:41] {2223} INFO - iteration 163, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:41] {2417} INFO - at 14.9s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:41] {2223} INFO - iteration 164, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:42] {2417} INFO - at 15.0s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:42] {2223} INFO - iteration 165, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:42] {2417} INFO - at 15.1s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:42] {2223} INFO - iteration 166, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:42] {2417} INFO - at 15.2s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:42] {2223} INFO - iteration 167, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:42] {2417} INFO - at 15.2s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:42] {2223} INFO - iteration 168, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:42] {2417} INFO - at 15.3s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:42] {2223} INFO - iteration 169, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:42] {2417} INFO - at 15.4s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:42] {2223} INFO - iteration 170, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:42] {2417} INFO - at 15.4s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:42] {2223} INFO - iteration 171, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:42] {2417} INFO - at 15.6s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:42] {2223} INFO - iteration 172, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:42] {2417} INFO - at 15.6s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:42] {2223} INFO - iteration 173, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:42] {2417} INFO - at 15.8s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:42] {2223} INFO - iteration 174, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:42] {2417} INFO - at 15.8s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:42] {2223} INFO - iteration 175, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:42] {2417} INFO - at 15.9s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:42] {2223} INFO - iteration 176, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:43] {2417} INFO - at 16.0s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:43] {2223} INFO - iteration 177, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:43] {2417} INFO - at 16.1s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:43] {2223} INFO - iteration 178, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:43] {2417} INFO - at 16.1s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:43] {2223} INFO - iteration 179, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:43] {2417} INFO - at 16.2s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:43] {2223} INFO - iteration 180, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:43] {2417} INFO - at 16.3s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:43] {2223} INFO - iteration 181, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:43] {2417} INFO - at 16.4s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:43] {2223} INFO - iteration 182, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:43] {2417} INFO - at 16.5s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:43] {2223} INFO - iteration 183, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:43] {2417} INFO - at 16.6s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:43] {2223} INFO - iteration 184, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:43] {2417} INFO - at 16.7s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:43] {2223} INFO - iteration 185, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:43] {2417} INFO - at 16.8s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:43] {2223} INFO - iteration 186, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:44] {2417} INFO - at 17.0s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:44] {2223} INFO - iteration 187, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:44] {2417} INFO - at 17.0s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:44] {2223} INFO - iteration 188, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:44] {2417} INFO - at 17.2s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:44] {2223} INFO - iteration 189, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:44] {2417} INFO - at 17.2s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:44] {2223} INFO - iteration 190, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:44] {2417} INFO - at 17.3s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:44] {2223} INFO - iteration 191, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:44] {2417} INFO - at 17.5s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:44] {2223} INFO - iteration 192, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:44] {2417} INFO - at 17.6s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:44] {2223} INFO - iteration 193, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:44] {2417} INFO - at 17.6s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:44] {2223} INFO - iteration 194, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:44] {2417} INFO - at 17.7s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:44] {2223} INFO - iteration 195, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:44] {2417} INFO - at 17.7s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:44] {2223} INFO - iteration 196, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:45] {2417} INFO - at 18.1s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:45] {2223} INFO - iteration 197, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:45] {2417} INFO - at 18.2s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:45] {2223} INFO - iteration 198, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:45] {2417} INFO - at 18.3s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:45] {2223} INFO - iteration 199, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:45] {2417} INFO - at 18.4s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:45] {2223} INFO - iteration 200, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:45] {2417} INFO - at 18.5s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:45] {2223} INFO - iteration 201, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:45] {2417} INFO - at 18.5s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:45] {2223} INFO - iteration 202, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:45] {2417} INFO - at 18.6s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:45] {2223} INFO - iteration 203, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:45] {2417} INFO - at 18.8s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:45] {2223} INFO - iteration 204, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:45] {2417} INFO - at 18.9s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:45] {2223} INFO - iteration 205, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:46] {2417} INFO - at 19.0s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:46] {2223} INFO - iteration 206, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:46] {2417} INFO - at 19.1s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:46] {2223} INFO - iteration 207, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:46] {2417} INFO - at 19.2s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:46] {2223} INFO - iteration 208, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:46] {2417} INFO - at 19.3s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:46] {2223} INFO - iteration 209, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:46] {2417} INFO - at 19.5s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:46] {2223} INFO - iteration 210, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:46] {2417} INFO - at 19.5s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:46] {2223} INFO - iteration 211, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:46] {2417} INFO - at 19.7s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:46] {2223} INFO - iteration 212, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:46] {2417} INFO - at 19.7s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:46] {2223} INFO - iteration 213, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:46] {2417} INFO - at 19.8s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:46] {2223} INFO - iteration 214, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:46] {2417} INFO - at 19.8s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:46] {2223} INFO - iteration 215, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:47] {2417} INFO - at 20.0s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:47] {2223} INFO - iteration 216, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:47] {2417} INFO - at 20.1s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:47] {2223} INFO - iteration 217, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:47] {2417} INFO - at 20.2s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:47] {2223} INFO - iteration 218, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:47] {2417} INFO - at 20.3s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:47] {2223} INFO - iteration 219, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:47] {2417} INFO - at 20.4s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:47] {2223} INFO - iteration 220, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:47] {2417} INFO - at 20.6s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:47] {2223} INFO - iteration 221, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:47] {2417} INFO - at 20.8s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:47] {2223} INFO - iteration 222, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:47] {2417} INFO - at 20.8s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:47] {2223} INFO - iteration 223, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:47] {2417} INFO - at 20.9s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:47] {2223} INFO - iteration 224, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:48] {2417} INFO - at 21.0s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:48] {2223} INFO - iteration 225, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:48] {2417} INFO - at 21.1s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:48] {2223} INFO - iteration 226, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:48] {2417} INFO - at 21.3s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:48] {2223} INFO - iteration 227, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:48] {2417} INFO - at 21.4s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:48] {2223} INFO - iteration 228, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:48] {2417} INFO - at 21.6s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:48] {2223} INFO - iteration 229, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:48] {2417} INFO - at 21.6s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:48] {2223} INFO - iteration 230, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:48] {2417} INFO - at 21.7s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:48] {2223} INFO - iteration 231, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:48] {2417} INFO - at 21.8s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:48] {2223} INFO - iteration 232, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:49] {2417} INFO - at 21.9s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:49] {2223} INFO - iteration 233, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:49] {2417} INFO - at 22.0s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:49] {2223} INFO - iteration 234, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:49] {2417} INFO - at 22.1s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:49] {2223} INFO - iteration 235, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:49] {2417} INFO - at 22.2s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:49] {2223} INFO - iteration 236, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:49] {2417} INFO - at 22.3s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:49] {2223} INFO - iteration 237, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:49] {2417} INFO - at 22.4s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:49] {2223} INFO - iteration 238, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:49] {2417} INFO - at 22.5s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:49] {2223} INFO - iteration 239, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:49] {2417} INFO - at 22.6s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:49] {2223} INFO - iteration 240, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:49] {2417} INFO - at 22.6s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:49] {2223} INFO - iteration 241, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:49] {2417} INFO - at 22.8s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:49] {2223} INFO - iteration 242, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:49] {2417} INFO - at 22.8s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:49] {2223} INFO - iteration 243, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:50] {2417} INFO - at 23.0s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:50] {2223} INFO - iteration 244, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:50] {2417} INFO - at 23.2s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:50] {2223} INFO - iteration 245, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:50] {2417} INFO - at 23.3s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:50] {2223} INFO - iteration 246, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:50] {2417} INFO - at 23.4s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:50] {2223} INFO - iteration 247, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:50] {2417} INFO - at 23.5s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:50] {2223} INFO - iteration 248, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:50] {2417} INFO - at 23.6s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:50] {2223} INFO - iteration 249, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:50] {2417} INFO - at 23.7s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:50] {2223} INFO - iteration 250, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:50] {2417} INFO - at 23.7s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:50] {2223} INFO - iteration 251, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:50] {2417} INFO - at 23.9s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:50] {2223} INFO - iteration 252, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:50] {2417} INFO - at 23.9s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:51] {2223} INFO - iteration 253, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:51] {2417} INFO - at 24.0s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:51] {2223} INFO - iteration 254, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:51] {2417} INFO - at 24.1s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:51] {2223} INFO - iteration 255, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:51] {2417} INFO - at 24.2s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:51] {2223} INFO - iteration 256, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:51] {2417} INFO - at 24.3s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:51] {2223} INFO - iteration 257, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:51] {2417} INFO - at 24.4s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:51] {2223} INFO - iteration 258, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:51] {2417} INFO - at 24.5s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:51] {2223} INFO - iteration 259, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:51] {2417} INFO - at 24.6s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:51] {2223} INFO - iteration 260, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:51] {2417} INFO - at 24.6s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:51] {2223} INFO - iteration 261, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:51] {2417} INFO - at 24.9s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:51] {2223} INFO - iteration 262, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:52] {2417} INFO - at 25.0s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:52] {2223} INFO - iteration 263, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:52] {2417} INFO - at 25.0s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:52] {2223} INFO - iteration 264, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:52] {2417} INFO - at 25.1s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:52] {2223} INFO - iteration 265, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:52] {2417} INFO - at 25.2s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:52] {2223} INFO - iteration 266, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:52] {2417} INFO - at 25.4s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:52] {2223} INFO - iteration 267, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:52] {2417} INFO - at 25.4s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:52] {2223} INFO - iteration 268, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:52] {2417} INFO - at 25.5s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:52] {2223} INFO - iteration 269, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:52] {2417} INFO - at 25.6s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:52] {2223} INFO - iteration 270, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:52] {2417} INFO - at 25.7s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:52] {2223} INFO - iteration 271, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:52] {2417} INFO - at 25.8s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:52] {2223} INFO - iteration 272, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:53] {2417} INFO - at 25.9s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:53] {2223} INFO - iteration 273, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:53] {2417} INFO - at 26.0s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:53] {2223} INFO - iteration 274, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:53] {2417} INFO - at 26.2s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:53] {2223} INFO - iteration 275, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:53] {2417} INFO - at 26.4s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:53] {2223} INFO - iteration 276, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:53] {2417} INFO - at 26.4s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:53] {2223} INFO - iteration 277, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:53] {2417} INFO - at 26.5s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:53] {2223} INFO - iteration 278, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:53] {2417} INFO - at 26.6s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:53] {2223} INFO - iteration 279, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:53] {2417} INFO - at 26.7s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:53] {2223} INFO - iteration 280, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:53] {2417} INFO - at 26.8s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:53] {2223} INFO - iteration 281, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:53] {2417} INFO - at 26.9s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:53] {2223} INFO - iteration 282, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:54] {2417} INFO - at 26.9s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:54] {2223} INFO - iteration 283, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:54] {2417} INFO - at 27.0s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:54] {2223} INFO - iteration 284, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:54] {2417} INFO - at 27.1s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:54] {2223} INFO - iteration 285, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:54] {2417} INFO - at 27.2s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:54] {2223} INFO - iteration 286, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:54] {2417} INFO - at 27.3s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:54] {2223} INFO - iteration 287, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:54] {2417} INFO - at 27.4s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:54] {2223} INFO - iteration 288, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:54] {2417} INFO - at 27.4s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:54] {2223} INFO - iteration 289, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:54] {2417} INFO - at 27.6s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:54] {2223} INFO - iteration 290, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:54] {2417} INFO - at 27.7s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:54] {2223} INFO - iteration 291, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:54] {2417} INFO - at 27.8s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:54] {2223} INFO - iteration 292, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:54] {2417} INFO - at 27.8s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:54] {2223} INFO - iteration 293, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:55] {2417} INFO - at 28.1s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:55] {2223} INFO - iteration 294, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:55] {2417} INFO - at 28.1s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:55] {2223} INFO - iteration 295, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:55] {2417} INFO - at 28.2s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:55] {2223} INFO - iteration 296, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:55] {2417} INFO - at 28.3s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:55] {2223} INFO - iteration 297, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:55] {2417} INFO - at 28.4s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:55] {2223} INFO - iteration 298, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:55] {2417} INFO - at 28.5s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:55] {2223} INFO - iteration 299, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:55] {2417} INFO - at 28.6s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:55] {2223} INFO - iteration 300, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:55] {2417} INFO - at 28.6s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:55] {2223} INFO - iteration 301, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:55] {2417} INFO - at 28.7s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:55] {2223} INFO - iteration 302, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:55] {2417} INFO - at 28.8s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:55] {2223} INFO - iteration 303, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:55] {2417} INFO - at 28.9s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:55] {2223} INFO - iteration 304, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:56] {2417} INFO - at 29.0s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:56] {2223} INFO - iteration 305, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:56] {2417} INFO - at 29.0s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:56] {2223} INFO - iteration 306, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:56] {2417} INFO - at 29.2s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:56] {2223} INFO - iteration 307, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:56] {2417} INFO - at 29.3s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:56] {2223} INFO - iteration 308, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:56] {2417} INFO - at 29.6s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:56] {2223} INFO - iteration 309, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:56] {2417} INFO - at 29.8s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:56] {2223} INFO - iteration 310, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:56] {2417} INFO - at 29.8s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:56] {2223} INFO - iteration 311, current learner my_xgb1\n", - "[flaml.automl: 11-23 01:30:57] {2417} INFO - at 30.0s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:57] {2223} INFO - iteration 312, current learner my_xgb2\n", - "[flaml.automl: 11-23 01:30:57] {2417} INFO - at 30.0s,\testimator my_xgb2's best error=4.1611,\tbest estimator my_xgb1's best error=0.3347\n", - "[flaml.automl: 11-23 01:30:57] {2629} INFO - retrain my_xgb1 for 0.1s\n", - "[flaml.automl: 11-23 01:30:57] {2634} INFO - retrained model: \n", - "[flaml.automl: 11-23 01:30:57] {2014} INFO - fit succeeded\n", - "[flaml.automl: 11-23 01:30:57] {2016} INFO - Time taken to find the best model: 11.981720209121704\n" + "[flaml.automl: 07-01 15:45:35] {2427} INFO - task = regression\n", + "[flaml.automl: 07-01 15:45:35] {2429} INFO - Data split method: uniform\n", + "[flaml.automl: 07-01 15:45:35] {2432} INFO - Evaluation method: holdout\n", + "[flaml.automl: 07-01 15:45:35] {2501} INFO - Minimizing error metric: 1-r2\n", + "[flaml.automl: 07-01 15:45:35] {2641} INFO - List of ML learners in AutoML Run: ['my_xgb1', 'my_xgb2']\n", + "[flaml.automl: 07-01 15:45:35] {2933} INFO - iteration 0, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:35] {3061} INFO - Estimated sufficient time budget=356s. Estimated necessary time budget=0s.\n", + "[flaml.automl: 07-01 15:45:35] {3108} INFO - at 0.1s,\testimator my_xgb1's best error=1.7590,\tbest estimator my_xgb1's best error=1.7590\n", + "[flaml.automl: 07-01 15:45:35] {2933} INFO - iteration 1, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:35] {3108} INFO - at 0.1s,\testimator my_xgb1's best error=0.7534,\tbest estimator my_xgb1's best error=0.7534\n", + "[flaml.automl: 07-01 15:45:35] {2933} INFO - iteration 2, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:35] {3108} INFO - at 0.2s,\testimator my_xgb1's best error=0.7534,\tbest estimator my_xgb1's best error=0.7534\n", + "[flaml.automl: 07-01 15:45:35] {2933} INFO - iteration 3, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:35] {3108} INFO - at 0.2s,\testimator my_xgb1's best error=0.7534,\tbest estimator my_xgb1's best error=0.7534\n", + "[flaml.automl: 07-01 15:45:35] {2933} INFO - iteration 4, current learner my_xgb2\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:35] {3108} INFO - at 0.2s,\testimator my_xgb2's best error=4.1611,\tbest estimator my_xgb1's best error=0.7534\n", + "[flaml.automl: 07-01 15:45:35] {2933} INFO - iteration 5, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:35] {3108} INFO - at 0.3s,\testimator my_xgb1's best error=0.7534,\tbest estimator my_xgb1's best error=0.7534\n", + "[flaml.automl: 07-01 15:45:35] {2933} INFO - iteration 6, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:35] {3108} INFO - at 0.3s,\testimator my_xgb1's best error=0.7534,\tbest estimator my_xgb1's best error=0.7534\n", + "[flaml.automl: 07-01 15:45:35] {2933} INFO - iteration 7, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:35] {3108} INFO - at 0.4s,\testimator my_xgb1's best error=0.7534,\tbest estimator my_xgb1's best error=0.7534\n", + "[flaml.automl: 07-01 15:45:35] {2933} INFO - iteration 8, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:35] {3108} INFO - at 0.4s,\testimator my_xgb1's best error=0.4908,\tbest estimator my_xgb1's best error=0.4908\n", + "[flaml.automl: 07-01 15:45:35] {2933} INFO - iteration 9, current learner my_xgb2\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:36] {3108} INFO - at 0.4s,\testimator my_xgb2's best error=4.1611,\tbest estimator my_xgb1's best error=0.4908\n", + "[flaml.automl: 07-01 15:45:36] {2933} INFO - iteration 10, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:36] {3108} INFO - at 0.5s,\testimator my_xgb1's best error=0.4908,\tbest estimator my_xgb1's best error=0.4908\n", + "[flaml.automl: 07-01 15:45:36] {2933} INFO - iteration 11, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:36] {3108} INFO - at 0.5s,\testimator my_xgb1's best error=0.4908,\tbest estimator my_xgb1's best error=0.4908\n", + "[flaml.automl: 07-01 15:45:36] {2933} INFO - iteration 12, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:36] {3108} INFO - at 0.6s,\testimator my_xgb1's best error=0.4908,\tbest estimator my_xgb1's best error=0.4908\n", + "[flaml.automl: 07-01 15:45:36] {2933} INFO - iteration 13, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:36] {3108} INFO - at 0.6s,\testimator my_xgb1's best error=0.4908,\tbest estimator my_xgb1's best error=0.4908\n", + "[flaml.automl: 07-01 15:45:36] {2933} INFO - iteration 14, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:36] {3108} INFO - at 0.7s,\testimator my_xgb1's best error=0.4908,\tbest estimator my_xgb1's best error=0.4908\n", + "[flaml.automl: 07-01 15:45:36] {2933} INFO - iteration 15, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:36] {3108} INFO - at 0.8s,\testimator my_xgb1's best error=0.4908,\tbest estimator my_xgb1's best error=0.4908\n", + "[flaml.automl: 07-01 15:45:36] {2933} INFO - iteration 16, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:36] {3108} INFO - at 0.8s,\testimator my_xgb1's best error=0.4908,\tbest estimator my_xgb1's best error=0.4908\n", + "[flaml.automl: 07-01 15:45:36] {2933} INFO - iteration 17, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:36] {3108} INFO - at 0.9s,\testimator my_xgb1's best error=0.4908,\tbest estimator my_xgb1's best error=0.4908\n", + "[flaml.automl: 07-01 15:45:36] {2933} INFO - iteration 18, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:36] {3108} INFO - at 1.0s,\testimator my_xgb1's best error=0.4908,\tbest estimator my_xgb1's best error=0.4908\n", + "[flaml.automl: 07-01 15:45:36] {2933} INFO - iteration 19, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:36] {3108} INFO - at 1.1s,\testimator my_xgb1's best error=0.4908,\tbest estimator my_xgb1's best error=0.4908\n", + "[flaml.automl: 07-01 15:45:36] {2933} INFO - iteration 20, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:36] {3108} INFO - at 1.1s,\testimator my_xgb1's best error=0.4908,\tbest estimator my_xgb1's best error=0.4908\n", + "[flaml.automl: 07-01 15:45:36] {2933} INFO - iteration 21, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:36] {3108} INFO - at 1.2s,\testimator my_xgb1's best error=0.4908,\tbest estimator my_xgb1's best error=0.4908\n", + "[flaml.automl: 07-01 15:45:36] {2933} INFO - iteration 22, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:36] {3108} INFO - at 1.2s,\testimator my_xgb1's best error=0.4908,\tbest estimator my_xgb1's best error=0.4908\n", + "[flaml.automl: 07-01 15:45:36] {2933} INFO - iteration 23, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:36] {3108} INFO - at 1.3s,\testimator my_xgb1's best error=0.4908,\tbest estimator my_xgb1's best error=0.4908\n", + "[flaml.automl: 07-01 15:45:36] {2933} INFO - iteration 24, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:36] {3108} INFO - at 1.3s,\testimator my_xgb1's best error=0.4908,\tbest estimator my_xgb1's best error=0.4908\n", + "[flaml.automl: 07-01 15:45:36] {2933} INFO - iteration 25, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:36] {3108} INFO - at 1.3s,\testimator my_xgb1's best error=0.4842,\tbest estimator my_xgb1's best error=0.4842\n", + "[flaml.automl: 07-01 15:45:36] {2933} INFO - iteration 26, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:36] {3108} INFO - at 1.4s,\testimator my_xgb1's best error=0.4842,\tbest estimator my_xgb1's best error=0.4842\n", + "[flaml.automl: 07-01 15:45:36] {2933} INFO - iteration 27, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:37] {3108} INFO - at 1.5s,\testimator my_xgb1's best error=0.4842,\tbest estimator my_xgb1's best error=0.4842\n", + "[flaml.automl: 07-01 15:45:37] {2933} INFO - iteration 28, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:37] {3108} INFO - at 1.5s,\testimator my_xgb1's best error=0.4842,\tbest estimator my_xgb1's best error=0.4842\n", + "[flaml.automl: 07-01 15:45:37] {2933} INFO - iteration 29, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:37] {3108} INFO - at 1.5s,\testimator my_xgb1's best error=0.4842,\tbest estimator my_xgb1's best error=0.4842\n", + "[flaml.automl: 07-01 15:45:37] {2933} INFO - iteration 30, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:37] {3108} INFO - at 1.6s,\testimator my_xgb1's best error=0.4842,\tbest estimator my_xgb1's best error=0.4842\n", + "[flaml.automl: 07-01 15:45:37] {2933} INFO - iteration 31, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:37] {3108} INFO - at 1.6s,\testimator my_xgb1's best error=0.4842,\tbest estimator my_xgb1's best error=0.4842\n", + "[flaml.automl: 07-01 15:45:37] {2933} INFO - iteration 32, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:37] {3108} INFO - at 1.7s,\testimator my_xgb1's best error=0.4836,\tbest estimator my_xgb1's best error=0.4836\n", + "[flaml.automl: 07-01 15:45:37] {2933} INFO - iteration 33, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:37] {3108} INFO - at 1.7s,\testimator my_xgb1's best error=0.4836,\tbest estimator my_xgb1's best error=0.4836\n", + "[flaml.automl: 07-01 15:45:37] {2933} INFO - iteration 34, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:37] {3108} INFO - at 1.8s,\testimator my_xgb1's best error=0.4836,\tbest estimator my_xgb1's best error=0.4836\n", + "[flaml.automl: 07-01 15:45:37] {2933} INFO - iteration 35, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:37] {3108} INFO - at 1.8s,\testimator my_xgb1's best error=0.4836,\tbest estimator my_xgb1's best error=0.4836\n", + "[flaml.automl: 07-01 15:45:37] {2933} INFO - iteration 36, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:37] {3108} INFO - at 1.9s,\testimator my_xgb1's best error=0.4836,\tbest estimator my_xgb1's best error=0.4836\n", + "[flaml.automl: 07-01 15:45:37] {2933} INFO - iteration 37, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:37] {3108} INFO - at 1.9s,\testimator my_xgb1's best error=0.4836,\tbest estimator my_xgb1's best error=0.4836\n", + "[flaml.automl: 07-01 15:45:37] {2933} INFO - iteration 38, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:37] {3108} INFO - at 2.1s,\testimator my_xgb1's best error=0.4836,\tbest estimator my_xgb1's best error=0.4836\n", + "[flaml.automl: 07-01 15:45:37] {2933} INFO - iteration 39, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:37] {3108} INFO - at 2.2s,\testimator my_xgb1's best error=0.4836,\tbest estimator my_xgb1's best error=0.4836\n", + "[flaml.automl: 07-01 15:45:37] {2933} INFO - iteration 40, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:37] {3108} INFO - at 2.3s,\testimator my_xgb1's best error=0.4836,\tbest estimator my_xgb1's best error=0.4836\n", + "[flaml.automl: 07-01 15:45:37] {2933} INFO - iteration 41, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:37] {3108} INFO - at 2.3s,\testimator my_xgb1's best error=0.4836,\tbest estimator my_xgb1's best error=0.4836\n", + "[flaml.automl: 07-01 15:45:37] {2933} INFO - iteration 42, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:37] {3108} INFO - at 2.4s,\testimator my_xgb1's best error=0.4836,\tbest estimator my_xgb1's best error=0.4836\n", + "[flaml.automl: 07-01 15:45:37] {2933} INFO - iteration 43, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:37] {3108} INFO - at 2.4s,\testimator my_xgb1's best error=0.4836,\tbest estimator my_xgb1's best error=0.4836\n", + "[flaml.automl: 07-01 15:45:37] {2933} INFO - iteration 44, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:38] {3108} INFO - at 2.4s,\testimator my_xgb1's best error=0.4836,\tbest estimator my_xgb1's best error=0.4836\n", + "[flaml.automl: 07-01 15:45:38] {2933} INFO - iteration 45, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:38] {3108} INFO - at 2.5s,\testimator my_xgb1's best error=0.4836,\tbest estimator my_xgb1's best error=0.4836\n", + "[flaml.automl: 07-01 15:45:38] {2933} INFO - iteration 46, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:38] {3108} INFO - at 2.5s,\testimator my_xgb1's best error=0.4836,\tbest estimator my_xgb1's best error=0.4836\n", + "[flaml.automl: 07-01 15:45:38] {2933} INFO - iteration 47, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:38] {3108} INFO - at 2.6s,\testimator my_xgb1's best error=0.4836,\tbest estimator my_xgb1's best error=0.4836\n", + "[flaml.automl: 07-01 15:45:38] {2933} INFO - iteration 48, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:38] {3108} INFO - at 2.6s,\testimator my_xgb1's best error=0.4836,\tbest estimator my_xgb1's best error=0.4836\n", + "[flaml.automl: 07-01 15:45:38] {2933} INFO - iteration 49, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:38] {3108} INFO - at 2.7s,\testimator my_xgb1's best error=0.4836,\tbest estimator my_xgb1's best error=0.4836\n", + "[flaml.automl: 07-01 15:45:38] {2933} INFO - iteration 50, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:38] {3108} INFO - at 2.7s,\testimator my_xgb1's best error=0.4110,\tbest estimator my_xgb1's best error=0.4110\n", + "[flaml.automl: 07-01 15:45:38] {2933} INFO - iteration 51, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:38] {3108} INFO - at 2.8s,\testimator my_xgb1's best error=0.4110,\tbest estimator my_xgb1's best error=0.4110\n", + "[flaml.automl: 07-01 15:45:38] {2933} INFO - iteration 52, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:38] {3108} INFO - at 3.1s,\testimator my_xgb1's best error=0.4110,\tbest estimator my_xgb1's best error=0.4110\n", + "[flaml.automl: 07-01 15:45:38] {2933} INFO - iteration 53, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:38] {3108} INFO - at 3.2s,\testimator my_xgb1's best error=0.4110,\tbest estimator my_xgb1's best error=0.4110\n", + "[flaml.automl: 07-01 15:45:38] {2933} INFO - iteration 54, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:38] {3108} INFO - at 3.3s,\testimator my_xgb1's best error=0.4110,\tbest estimator my_xgb1's best error=0.4110\n", + "[flaml.automl: 07-01 15:45:38] {2933} INFO - iteration 55, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:38] {3108} INFO - at 3.4s,\testimator my_xgb1's best error=0.4110,\tbest estimator my_xgb1's best error=0.4110\n", + "[flaml.automl: 07-01 15:45:38] {2933} INFO - iteration 56, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:39] {3108} INFO - at 3.5s,\testimator my_xgb1's best error=0.4110,\tbest estimator my_xgb1's best error=0.4110\n", + "[flaml.automl: 07-01 15:45:39] {2933} INFO - iteration 57, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:39] {3108} INFO - at 3.6s,\testimator my_xgb1's best error=0.4110,\tbest estimator my_xgb1's best error=0.4110\n", + "[flaml.automl: 07-01 15:45:39] {2933} INFO - iteration 58, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:39] {3108} INFO - at 3.7s,\testimator my_xgb1's best error=0.4110,\tbest estimator my_xgb1's best error=0.4110\n", + "[flaml.automl: 07-01 15:45:39] {2933} INFO - iteration 59, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:39] {3108} INFO - at 3.8s,\testimator my_xgb1's best error=0.4110,\tbest estimator my_xgb1's best error=0.4110\n", + "[flaml.automl: 07-01 15:45:39] {2933} INFO - iteration 60, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:39] {3108} INFO - at 4.1s,\testimator my_xgb1's best error=0.4110,\tbest estimator my_xgb1's best error=0.4110\n", + "[flaml.automl: 07-01 15:45:39] {2933} INFO - iteration 61, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:39] {3108} INFO - at 4.2s,\testimator my_xgb1's best error=0.4110,\tbest estimator my_xgb1's best error=0.4110\n", + "[flaml.automl: 07-01 15:45:39] {2933} INFO - iteration 62, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:39] {3108} INFO - at 4.3s,\testimator my_xgb1's best error=0.4110,\tbest estimator my_xgb1's best error=0.4110\n", + "[flaml.automl: 07-01 15:45:39] {2933} INFO - iteration 63, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:39] {3108} INFO - at 4.3s,\testimator my_xgb1's best error=0.4110,\tbest estimator my_xgb1's best error=0.4110\n", + "[flaml.automl: 07-01 15:45:39] {2933} INFO - iteration 64, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:39] {3108} INFO - at 4.4s,\testimator my_xgb1's best error=0.4110,\tbest estimator my_xgb1's best error=0.4110\n", + "[flaml.automl: 07-01 15:45:39] {2933} INFO - iteration 65, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:40] {3108} INFO - at 4.5s,\testimator my_xgb1's best error=0.4110,\tbest estimator my_xgb1's best error=0.4110\n", + "[flaml.automl: 07-01 15:45:40] {2933} INFO - iteration 66, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:40] {3108} INFO - at 4.9s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:40] {2933} INFO - iteration 67, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:40] {3108} INFO - at 4.9s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:40] {2933} INFO - iteration 68, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:40] {3108} INFO - at 5.1s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:40] {2933} INFO - iteration 69, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:40] {3108} INFO - at 5.3s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:40] {2933} INFO - iteration 70, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:41] {3108} INFO - at 5.5s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:41] {2933} INFO - iteration 71, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:41] {3108} INFO - at 5.6s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:41] {2933} INFO - iteration 72, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:41] {3108} INFO - at 5.8s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:41] {2933} INFO - iteration 73, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:41] {3108} INFO - at 6.0s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:41] {2933} INFO - iteration 74, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:41] {3108} INFO - at 6.0s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:41] {2933} INFO - iteration 75, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:41] {3108} INFO - at 6.3s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:41] {2933} INFO - iteration 76, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:42] {3108} INFO - at 6.8s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:42] {2933} INFO - iteration 77, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:43] {3108} INFO - at 7.5s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:43] {2933} INFO - iteration 78, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:43] {3108} INFO - at 7.7s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:43] {2933} INFO - iteration 79, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:43] {3108} INFO - at 7.8s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:43] {2933} INFO - iteration 80, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:43] {3108} INFO - at 8.3s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:43] {2933} INFO - iteration 81, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:43] {3108} INFO - at 8.4s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:43] {2933} INFO - iteration 82, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:44] {3108} INFO - at 8.9s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:44] {2933} INFO - iteration 83, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:44] {3108} INFO - at 9.0s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:44] {2933} INFO - iteration 84, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:44] {3108} INFO - at 9.2s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:44] {2933} INFO - iteration 85, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:44] {3108} INFO - at 9.3s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:44] {2933} INFO - iteration 86, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:45] {3108} INFO - at 9.8s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:45] {2933} INFO - iteration 87, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:45] {3108} INFO - at 9.9s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:45] {2933} INFO - iteration 88, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:45] {3108} INFO - at 10.1s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:45] {2933} INFO - iteration 89, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:45] {3108} INFO - at 10.2s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:45] {2933} INFO - iteration 90, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:46] {3108} INFO - at 10.6s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:46] {2933} INFO - iteration 91, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:46] {3108} INFO - at 10.7s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:46] {2933} INFO - iteration 92, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:46] {3108} INFO - at 11.0s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:46] {2933} INFO - iteration 93, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:46] {3108} INFO - at 11.1s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:46] {2933} INFO - iteration 94, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:46] {3108} INFO - at 11.2s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:46] {2933} INFO - iteration 95, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:47] {3108} INFO - at 11.4s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:47] {2933} INFO - iteration 96, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:47] {3108} INFO - at 11.5s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:47] {2933} INFO - iteration 97, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:47] {3108} INFO - at 12.2s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:47] {2933} INFO - iteration 98, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:47] {3108} INFO - at 12.4s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:47] {2933} INFO - iteration 99, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:48] {3108} INFO - at 12.5s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:48] {2933} INFO - iteration 100, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:48] {3108} INFO - at 12.6s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:48] {2933} INFO - iteration 101, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:48] {3108} INFO - at 12.8s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:48] {2933} INFO - iteration 102, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:48] {3108} INFO - at 12.9s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:48] {2933} INFO - iteration 103, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:48] {3108} INFO - at 13.1s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:48] {2933} INFO - iteration 104, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:48] {3108} INFO - at 13.3s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:48] {2933} INFO - iteration 105, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:49] {3108} INFO - at 13.5s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:49] {2933} INFO - iteration 106, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:49] {3108} INFO - at 13.6s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:49] {2933} INFO - iteration 107, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:49] {3108} INFO - at 13.9s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:49] {2933} INFO - iteration 108, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:49] {3108} INFO - at 14.3s,\testimator my_xgb1's best error=0.3716,\tbest estimator my_xgb1's best error=0.3716\n", + "[flaml.automl: 07-01 15:45:49] {2933} INFO - iteration 109, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:49] {3108} INFO - at 14.4s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", + "[flaml.automl: 07-01 15:45:49] {2933} INFO - iteration 110, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:50] {3108} INFO - at 14.5s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", + "[flaml.automl: 07-01 15:45:50] {2933} INFO - iteration 111, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:50] {3108} INFO - at 14.6s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", + "[flaml.automl: 07-01 15:45:50] {2933} INFO - iteration 112, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:50] {3108} INFO - at 14.8s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", + "[flaml.automl: 07-01 15:45:50] {2933} INFO - iteration 113, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:50] {3108} INFO - at 14.8s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", + "[flaml.automl: 07-01 15:45:50] {2933} INFO - iteration 114, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:50] {3108} INFO - at 14.9s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", + "[flaml.automl: 07-01 15:45:50] {2933} INFO - iteration 115, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:50] {3108} INFO - at 15.1s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", + "[flaml.automl: 07-01 15:45:50] {2933} INFO - iteration 116, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:50] {3108} INFO - at 15.2s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", + "[flaml.automl: 07-01 15:45:50] {2933} INFO - iteration 117, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:50] {3108} INFO - at 15.4s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", + "[flaml.automl: 07-01 15:45:50] {2933} INFO - iteration 118, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:50] {3108} INFO - at 15.4s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", + "[flaml.automl: 07-01 15:45:50] {2933} INFO - iteration 119, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:51] {3108} INFO - at 15.6s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", + "[flaml.automl: 07-01 15:45:51] {2933} INFO - iteration 120, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:51] {3108} INFO - at 15.8s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", + "[flaml.automl: 07-01 15:45:51] {2933} INFO - iteration 121, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:51] {3108} INFO - at 16.0s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", + "[flaml.automl: 07-01 15:45:51] {2933} INFO - iteration 122, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:51] {3108} INFO - at 16.1s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", + "[flaml.automl: 07-01 15:45:51] {2933} INFO - iteration 123, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:51] {3108} INFO - at 16.1s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", + "[flaml.automl: 07-01 15:45:51] {2933} INFO - iteration 124, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:51] {3108} INFO - at 16.2s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", + "[flaml.automl: 07-01 15:45:51] {2933} INFO - iteration 125, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:52] {3108} INFO - at 16.4s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", + "[flaml.automl: 07-01 15:45:52] {2933} INFO - iteration 126, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:52] {3108} INFO - at 16.6s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", + "[flaml.automl: 07-01 15:45:52] {2933} INFO - iteration 127, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:52] {3108} INFO - at 16.6s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", + "[flaml.automl: 07-01 15:45:52] {2933} INFO - iteration 128, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:52] {3108} INFO - at 16.8s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", + "[flaml.automl: 07-01 15:45:52] {2933} INFO - iteration 129, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:52] {3108} INFO - at 16.8s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", + "[flaml.automl: 07-01 15:45:52] {2933} INFO - iteration 130, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:52] {3108} INFO - at 17.0s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", + "[flaml.automl: 07-01 15:45:52] {2933} INFO - iteration 131, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:52] {3108} INFO - at 17.0s,\testimator my_xgb1's best error=0.3499,\tbest estimator my_xgb1's best error=0.3499\n", + "[flaml.automl: 07-01 15:45:52] {2933} INFO - iteration 132, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:52] {3108} INFO - at 17.4s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:52] {2933} INFO - iteration 133, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:53] {3108} INFO - at 17.5s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:53] {2933} INFO - iteration 134, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:53] {3108} INFO - at 17.7s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:53] {2933} INFO - iteration 135, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:53] {3108} INFO - at 17.8s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:53] {2933} INFO - iteration 136, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:53] {3108} INFO - at 17.9s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:53] {2933} INFO - iteration 137, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:53] {3108} INFO - at 18.1s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:53] {2933} INFO - iteration 138, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:53] {3108} INFO - at 18.3s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:53] {2933} INFO - iteration 139, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:53] {3108} INFO - at 18.4s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:53] {2933} INFO - iteration 140, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:54] {3108} INFO - at 18.6s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:54] {2933} INFO - iteration 141, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:54] {3108} INFO - at 18.7s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:54] {2933} INFO - iteration 142, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:54] {3108} INFO - at 19.0s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:54] {2933} INFO - iteration 143, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:54] {3108} INFO - at 19.1s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:54] {2933} INFO - iteration 144, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:54] {3108} INFO - at 19.2s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:54] {2933} INFO - iteration 145, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:54] {3108} INFO - at 19.3s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:54] {2933} INFO - iteration 146, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:55] {3108} INFO - at 19.4s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:55] {2933} INFO - iteration 147, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:55] {3108} INFO - at 19.6s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:55] {2933} INFO - iteration 148, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:55] {3108} INFO - at 19.7s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:55] {2933} INFO - iteration 149, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:55] {3108} INFO - at 19.8s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:55] {2933} INFO - iteration 150, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:55] {3108} INFO - at 20.0s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:55] {2933} INFO - iteration 151, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:55] {3108} INFO - at 20.1s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:55] {2933} INFO - iteration 152, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:55] {3108} INFO - at 20.2s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:55] {2933} INFO - iteration 153, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:56] {3108} INFO - at 20.4s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:56] {2933} INFO - iteration 154, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:56] {3108} INFO - at 20.6s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:56] {2933} INFO - iteration 155, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:56] {3108} INFO - at 20.7s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:56] {2933} INFO - iteration 156, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:56] {3108} INFO - at 20.9s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:56] {2933} INFO - iteration 157, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:56] {3108} INFO - at 21.1s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:56] {2933} INFO - iteration 158, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:56] {3108} INFO - at 21.2s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:56] {2933} INFO - iteration 159, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:57] {3108} INFO - at 21.6s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:57] {2933} INFO - iteration 160, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:57] {3108} INFO - at 21.7s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:57] {2933} INFO - iteration 161, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:57] {3108} INFO - at 22.0s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:57] {2933} INFO - iteration 162, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:57] {3108} INFO - at 22.0s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:57] {2933} INFO - iteration 163, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:57] {3108} INFO - at 22.2s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:57] {2933} INFO - iteration 164, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:57] {3108} INFO - at 22.4s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:57] {2933} INFO - iteration 165, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:58] {3108} INFO - at 22.5s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:58] {2933} INFO - iteration 166, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:58] {3108} INFO - at 22.6s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:58] {2933} INFO - iteration 167, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:58] {3108} INFO - at 22.7s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:58] {2933} INFO - iteration 168, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:58] {3108} INFO - at 22.8s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:58] {2933} INFO - iteration 169, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:58] {3108} INFO - at 22.9s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:58] {2933} INFO - iteration 170, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:58] {3108} INFO - at 23.2s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:58] {2933} INFO - iteration 171, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:58] {3108} INFO - at 23.2s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:58] {2933} INFO - iteration 172, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:58] {3108} INFO - at 23.4s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:58] {2933} INFO - iteration 173, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:59] {3108} INFO - at 23.5s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:59] {2933} INFO - iteration 174, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:59] {3108} INFO - at 23.6s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:59] {2933} INFO - iteration 175, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:59] {3108} INFO - at 23.7s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:59] {2933} INFO - iteration 176, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:59] {3108} INFO - at 23.9s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:59] {2933} INFO - iteration 177, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:59] {3108} INFO - at 24.0s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:59] {2933} INFO - iteration 178, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:59] {3108} INFO - at 24.1s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:59] {2933} INFO - iteration 179, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:45:59] {3108} INFO - at 24.2s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:45:59] {2933} INFO - iteration 180, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:00] {3108} INFO - at 24.5s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:00] {2933} INFO - iteration 181, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:00] {3108} INFO - at 24.6s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:00] {2933} INFO - iteration 182, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:00] {3108} INFO - at 24.8s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:00] {2933} INFO - iteration 183, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:00] {3108} INFO - at 24.9s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:00] {2933} INFO - iteration 184, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:00] {3108} INFO - at 24.9s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:00] {2933} INFO - iteration 185, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:00] {3108} INFO - at 25.1s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:00] {2933} INFO - iteration 186, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:00] {3108} INFO - at 25.2s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:00] {2933} INFO - iteration 187, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:00] {3108} INFO - at 25.4s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:00] {2933} INFO - iteration 188, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:01] {3108} INFO - at 25.5s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:01] {2933} INFO - iteration 189, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:01] {3108} INFO - at 25.7s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:01] {2933} INFO - iteration 190, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:01] {3108} INFO - at 25.9s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:01] {2933} INFO - iteration 191, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:01] {3108} INFO - at 25.9s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:01] {2933} INFO - iteration 192, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:01] {3108} INFO - at 26.0s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:01] {2933} INFO - iteration 193, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:01] {3108} INFO - at 26.2s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:01] {2933} INFO - iteration 194, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:01] {3108} INFO - at 26.3s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:01] {2933} INFO - iteration 195, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:02] {3108} INFO - at 26.9s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:02] {2933} INFO - iteration 196, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:02] {3108} INFO - at 26.9s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:02] {2933} INFO - iteration 197, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:02] {3108} INFO - at 27.1s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:02] {2933} INFO - iteration 198, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:02] {3108} INFO - at 27.3s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:02] {2933} INFO - iteration 199, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:03] {3108} INFO - at 27.4s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:03] {2933} INFO - iteration 200, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:03] {3108} INFO - at 27.5s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:03] {2933} INFO - iteration 201, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:03] {3108} INFO - at 27.8s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:03] {2933} INFO - iteration 202, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:03] {3108} INFO - at 28.3s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:03] {2933} INFO - iteration 203, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:03] {3108} INFO - at 28.3s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:03] {2933} INFO - iteration 204, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:04] {3108} INFO - at 28.5s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:04] {2933} INFO - iteration 205, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:04] {3108} INFO - at 28.6s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:04] {2933} INFO - iteration 206, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:04] {3108} INFO - at 28.7s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:04] {2933} INFO - iteration 207, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:04] {3108} INFO - at 29.0s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:04] {2933} INFO - iteration 208, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:04] {3108} INFO - at 29.1s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:04] {2933} INFO - iteration 209, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:04] {3108} INFO - at 29.3s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:04] {2933} INFO - iteration 210, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:05] {3108} INFO - at 29.4s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:05] {2933} INFO - iteration 211, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:05] {3108} INFO - at 29.5s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:05] {2933} INFO - iteration 212, current learner my_xgb1\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:05] {3108} INFO - at 29.7s,\testimator my_xgb1's best error=0.3347,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:05] {2933} INFO - iteration 213, current learner my_xgb2\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:05] {3108} INFO - at 29.7s,\testimator my_xgb2's best error=4.1611,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:05] {2933} INFO - iteration 214, current learner my_xgb2\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:05] {3108} INFO - at 29.8s,\testimator my_xgb2's best error=4.1611,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:05] {2933} INFO - iteration 215, current learner my_xgb2\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:05] {3108} INFO - at 29.8s,\testimator my_xgb2's best error=4.1611,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:05] {2933} INFO - iteration 216, current learner my_xgb2\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:05] {3108} INFO - at 29.9s,\testimator my_xgb2's best error=4.1611,\tbest estimator my_xgb1's best error=0.3347\n", + "[flaml.automl: 07-01 15:46:05] {2933} INFO - iteration 217, current learner my_xgb2\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:05] {3108} INFO - at 30.0s,\testimator my_xgb2's best error=4.1191,\tbest estimator my_xgb1's best error=0.3347\n", + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n", + "[flaml.automl: 07-01 15:46:05] {3372} INFO - retrain my_xgb1 for 0.1s\n", + "[flaml.automl: 07-01 15:46:05] {3379} INFO - retrained model: \n", + "[flaml.automl: 07-01 15:46:05] {2672} INFO - fit succeeded\n", + "[flaml.automl: 07-01 15:46:05] {2673} INFO - Time taken to find the best model: 17.357497692108154\n" ] } ], @@ -1291,9 +1880,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "Best hyperparmeter config: {'n_estimators': 28, 'max_leaves': 182, 'max_depth': 0, 'min_child_weight': 0.001, 'learning_rate': 0.2276973644896658, 'subsample': 0.6775148384104485, 'colsample_bylevel': 0.9912902070149149, 'colsample_bytree': 1.0, 'reg_alpha': 0.07330248020902469, 'reg_lambda': 0.36054508770487687}\n", + "Best hyperparmeter config: {'n_estimators': 28, 'max_leaves': 182, 'max_depth': 0, 'min_child_weight': 0.001, 'learning_rate': 0.22769736448966632, 'subsample': 0.6775148384104485, 'colsample_bylevel': 0.9912902070149149, 'colsample_bytree': 1.0, 'reg_alpha': 0.07330248020902469, 'reg_lambda': 0.3605450877048755}\n", "Best r2 on validation data: 0.6653\n", - "Training duration of best run: 0.09387 s\n", + "Training duration of best run: 0.09441 s\n", "Predicted labels\n", "[172378.17 248509.11 156986.72 ... 201823.47 238128.38 273842.53]\n", "True labels\n", @@ -1313,6 +1902,14 @@ "mse = 4332761742.09886\n", "mae = 43937.87377986465\n" ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/root/.local/lib/python3.9/site-packages/xgboost/data.py:192: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", + " from pandas import MultiIndex, Int64Index\n" + ] } ], "source": [ @@ -1332,11 +1929,9 @@ } ], "metadata": { - "interpreter": { - "hash": "0cfea3304185a9579d09e0953576b57c8581e46e6ebc6dfeb681bc5a511f7544" - }, "kernelspec": { - "display_name": "Python 3.8.0 64-bit ('blend': conda)", + "display_name": "Python 3.9.12 64-bit", + "language": "python", "name": "python3" }, "language_info": { @@ -1349,7 +1944,12 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.12" + "version": "3.9.12" + }, + "vscode": { + "interpreter": { + "hash": "949777d72b0d2535278d3dc13498b2535136f6dfe0678499012e853ee9abcab1" + } } }, "nbformat": 4, diff --git a/test/automl/test_classification.py b/test/automl/test_classification.py index e7b5e6345..8805fcfba 100644 --- a/test/automl/test_classification.py +++ b/test/automl/test_classification.py @@ -115,6 +115,8 @@ class TestClassification(unittest.TestCase): "ensemble": True, } automl.fit(X, y, **automl_settings) + print(automl.feature_names_in_) + print(automl.feature_importances_) del automl automl = AutoML() @@ -246,6 +248,8 @@ class TestClassification(unittest.TestCase): ) automl = AutoML() automl.fit(X_train=X_train, y_train=y_train, **automl_settings) + print(automl.feature_names_in_) + print(automl.feature_importances_) subprocess.check_call( [sys.executable, "-m", "pip", "install", "-U", "xgboost", "--user"] ) diff --git a/test/automl/test_notebook_example.py b/test/automl/test_notebook_example.py index 374c2501e..5699bb960 100644 --- a/test/automl/test_notebook_example.py +++ b/test/automl/test_notebook_example.py @@ -86,6 +86,8 @@ def test_automl(budget=5, dataset_format="dataframe", hpo_method=None): print(automl.resource_attr) print(automl.max_resource) print(automl.min_resource) + print(automl.feature_names_in_) + print(automl.feature_importances_) if budget < performance_check_budget: automl.fit(X_train=X_train, y_train=y_train, ensemble=True, **settings) diff --git a/test/test_model.py b/test/test_model.py index 3d1d59f1b..9a12b1b2e 100644 --- a/test/test_model.py +++ b/test/test_model.py @@ -69,17 +69,29 @@ def test_prep(): lr = LRL2Classifier() lr.fit(X, y) lr.predict(X) + print(lr.feature_names_in_) + print(lr.feature_importances_) lgbm = LGBMEstimator(n_estimators=4) lgbm.fit(X, y) + print(lgbm.feature_names_in_) + print(lgbm.feature_importances_) cat = CatBoostEstimator(n_estimators=4) cat.fit(X, y) + print(cat.feature_names_in_) + print(cat.feature_importances_) knn = KNeighborsEstimator(task="regression") knn.fit(X, y) + print(knn.feature_names_in_) + print(knn.feature_importances_) xgb = XGBoostEstimator(n_estimators=4, max_leaves=4) xgb.fit(X, y) xgb.predict(X) + print(xgb.feature_names_in_) + print(xgb.feature_importances_) rf = RandomForestEstimator(task="regression", n_estimators=4, criterion="gini") rf.fit(X, y) + print(rf.feature_names_in_) + print(rf.feature_importances_) prophet = Prophet() try: @@ -115,3 +127,9 @@ def test_prep(): lgbm.predict(X[:2]) lgbm.fit(X, y, period=2) lgbm.predict(X[:2]) + print(lgbm.feature_names_in_) + print(lgbm.feature_importances_) + + +if __name__ == "__main__": + test_prep() diff --git a/website/docs/Examples/AutoML-for-LightGBM.md b/website/docs/Examples/AutoML-for-LightGBM.md index 4840d6842..40c3115cc 100644 --- a/website/docs/Examples/AutoML-for-LightGBM.md +++ b/website/docs/Examples/AutoML-for-LightGBM.md @@ -14,7 +14,7 @@ settings = { "time_budget": 60, # total running time in seconds "metric": 'r2', # primary metrics for regression can be chosen from: ['mae','mse','r2'] "estimator_list": ['lgbm'], # list of ML learners; we tune lightgbm in this example - "task": 'regression', # task type + "task": 'regression', # task type "log_file_name": 'houses_experiment.log', # flaml log file "seed": 7654321, # random seed } @@ -89,7 +89,7 @@ print(automl.model.estimator) ```python import matplotlib.pyplot as plt -plt.barh(automl.model.estimator.feature_name_, automl.model.estimator.feature_importances_) +plt.barh(automl.feature_names_in_, automl.feature_importances_) ``` ![png](../Use-Cases/images/feature_importance.png) diff --git a/website/docs/Examples/AutoML-for-XGBoost.md b/website/docs/Examples/AutoML-for-XGBoost.md index 189bdb734..c2b4e0ec8 100644 --- a/website/docs/Examples/AutoML-for-XGBoost.md +++ b/website/docs/Examples/AutoML-for-XGBoost.md @@ -14,7 +14,7 @@ settings = { "time_budget": 60, # total running time in seconds "metric": 'r2', # primary metrics for regression can be chosen from: ['mae','mse','r2'] "estimator_list": ['xgboost'], # list of ML learners; we tune XGBoost in this example - "task": 'regression', # task type + "task": 'regression', # task type "log_file_name": 'houses_experiment.log', # flaml log file "seed": 7654321, # random seed } @@ -119,7 +119,7 @@ print(automl.model.estimator) ```python import matplotlib.pyplot as plt -plt.barh(X_train.columns, automl.model.estimator.feature_importances_) +plt.barh(automl.feature_names_in_, automl.feature_importances_) ``` ![png](images/xgb_feature_importance.png)