mirror of
https://github.com/microsoft/autogen.git
synced 2025-09-26 00:24:26 +00:00
update
This commit is contained in:
parent
7851a463aa
commit
e3c9da50da
@ -364,7 +364,7 @@ class AutoMLState:
|
||||
state.best_loss,
|
||||
state.n_jobs,
|
||||
state.learner_classes.get(estimator),
|
||||
state.cv_strategy,
|
||||
state.cv_score_agg_func,
|
||||
state.log_training_metric,
|
||||
this_estimator_kwargs,
|
||||
)
|
||||
@ -729,6 +729,7 @@ class AutoML(BaseEstimator):
|
||||
settings["min_sample_size"] = settings.get("min_sample_size", MIN_SAMPLE_TRAIN)
|
||||
settings["use_ray"] = settings.get("use_ray", False)
|
||||
settings["metric_constraints"] = settings.get("metric_constraints", [])
|
||||
settings["cv_score_agg_func"] = settings.get("cv_score_agg_func", None)
|
||||
settings["fit_kwargs_by_estimator"] = settings.get(
|
||||
"fit_kwargs_by_estimator", {}
|
||||
)
|
||||
@ -2071,7 +2072,7 @@ class AutoML(BaseEstimator):
|
||||
use_ray=None,
|
||||
metric_constraints=None,
|
||||
custom_hp=None,
|
||||
cv_strategy=None,
|
||||
cv_score_agg_func=None,
|
||||
fit_kwargs_by_estimator=None,
|
||||
**fit_kwargs,
|
||||
):
|
||||
@ -2289,21 +2290,39 @@ class AutoML(BaseEstimator):
|
||||
}
|
||||
```
|
||||
|
||||
cv_strategy: customized function, the strategy of conducting cross-validation. Default to average the optimization metric across folds.
|
||||
We give an example here:
|
||||
cv_score_agg_func: customized cross-validation scores aggregate function. Default to average metrics across folds. If specificed, this function needs to
|
||||
have the following signature:
|
||||
|
||||
```python
|
||||
def cv_strategy(val_loss_folds):
|
||||
return sum(val_loss_folds)/len(val_loss_folds)
|
||||
def cv_score_agg_func(metrics_across_folds):
|
||||
return metric_to_minimize, metrics_to_log
|
||||
```
|
||||
The input "metrics_across_folds" is a list of 2-tuples. Each tuple records the loss and metrics information of the corresponding fold.
|
||||
On each tuple, the first element is a float number that represents the loss score to minimize, and the second is a dict of all the metrics to log or None.
|
||||
It returns the final aggregate result of all folds. A float number of the minimization objective, and a dictionary as the metrics to log or None.
|
||||
E.g.,
|
||||
|
||||
```python
|
||||
def cv_score_agg_func(metrics_across_folds):
|
||||
metric_to_minimize = sum([tem[0] for tem in metrics_across_folds])/len(metrics_across_folds)
|
||||
metrics_to_log = None
|
||||
for single_fold in metrics_across_folds:
|
||||
if single_fold[1] is None:
|
||||
break
|
||||
elif metrics_to_log is None:
|
||||
metrics_to_log = single_fold[1]
|
||||
else:
|
||||
metrics_to_log = {k: metrics_to_log[k] + v for k, v in single_fold[1].items()}
|
||||
if metrics_to_log:
|
||||
n = len(metrics_across_folds)
|
||||
metrics_to_log = {k: v / n for k, v in metrics_to_log.items()}
|
||||
return metric_to_minimize, metrics_to_log
|
||||
```
|
||||
|
||||
where val_loss_folds is the list that stores the metrics values of all folds. In this example, we return the average of the optimization
|
||||
metric across all folds (default strategy).
|
||||
|
||||
fit_kwargs_by_estimator: dict, default=None | The user specified keywords arguments, grouped by estimator name.
|
||||
For TransformersEstimator, available fit_kwargs can be found from
|
||||
[TrainingArgumentsForAuto](nlp/huggingface/training_args).
|
||||
e.g.,
|
||||
fit_kwargs_by_estimator: dict, default=None | The user specified keywords arguments, grouped by estimator name.
|
||||
For TransformersEstimator, available fit_kwargs can be found from
|
||||
[TrainingArgumentsForAuto](nlp/huggingface/training_args).
|
||||
e.g.,
|
||||
|
||||
```python
|
||||
fit_kwargs_by_estimator = {
|
||||
@ -2460,7 +2479,7 @@ class AutoML(BaseEstimator):
|
||||
eval_method = self._decide_eval_method(eval_method, time_budget)
|
||||
self._state.eval_method = eval_method
|
||||
logger.info("Evaluation method: {}".format(eval_method))
|
||||
self._state.cv_strategy = cv_strategy
|
||||
self._state.cv_score_agg_func = cv_score_agg_func or self._settings.get("cv_score_agg_func")
|
||||
|
||||
self._retrain_in_budget = retrain_full == "budget" and (
|
||||
eval_method == "holdout" and self._state.X_val is None
|
||||
|
38
flaml/ml.py
38
flaml/ml.py
@ -438,14 +438,28 @@ def evaluate_model_CV(
|
||||
task,
|
||||
eval_metric,
|
||||
best_val_loss,
|
||||
cv_strategy,
|
||||
cv_score_agg_func,
|
||||
log_training_metric=False,
|
||||
fit_kwargs={},
|
||||
):
|
||||
if cv_strategy is None:
|
||||
cv_strategy = lambda val_loss_folds: sum(val_loss_folds)/len(val_loss_folds)
|
||||
if cv_score_agg_func is None:
|
||||
def cv_score_agg_func(metrics_across_folds):
|
||||
metric_to_minimize = sum([tem[0] for tem in metrics_across_folds])/len(metrics_across_folds)
|
||||
metrics_to_log = None
|
||||
for single_fold in metrics_across_folds:
|
||||
if single_fold[1] is None:
|
||||
break
|
||||
elif metrics_to_log is None:
|
||||
metrics_to_log = single_fold[1]
|
||||
else:
|
||||
metrics_to_log = {k: metrics_to_log[k] + v for k, v in single_fold[1].items()}
|
||||
if metrics_to_log:
|
||||
n = len(metrics_across_folds)
|
||||
metrics_to_log = {k: v / n for k, v in metrics_to_log.items()}
|
||||
return metric_to_minimize, metrics_to_log
|
||||
start_time = time.time()
|
||||
val_loss_folds = []
|
||||
log_metric_folds = []
|
||||
total_metric = None
|
||||
metric = None
|
||||
train_time = pred_time = 0
|
||||
@ -520,8 +534,8 @@ def evaluate_model_CV(
|
||||
total_fold_num += 1
|
||||
val_loss_folds.append(val_loss_i)
|
||||
if log_training_metric or not isinstance(eval_metric, str):
|
||||
if isinstance(total_metric, dict):
|
||||
total_metric = {k: total_metric[k] + v for k, v in metric_i.items()}
|
||||
if isinstance(metric_i, dict):
|
||||
log_metric_folds.append(metric_i)
|
||||
elif total_metric is not None:
|
||||
total_metric += metric_i
|
||||
else:
|
||||
@ -529,17 +543,17 @@ def evaluate_model_CV(
|
||||
train_time += train_time_i
|
||||
pred_time += pred_time_i
|
||||
if valid_fold_num == n:
|
||||
val_loss_list.append(cv_strategy(val_loss_folds))
|
||||
val_loss_folds = []
|
||||
val_loss_list.append(cv_score_agg_func(list(zip(val_loss_folds,[None]*len(val_loss_folds))))[0])
|
||||
valid_fold_num = 0
|
||||
val_loss_folds = []
|
||||
elif time.time() - start_time >= budget:
|
||||
val_loss_list.append(cv_strategy(val_loss_folds))
|
||||
val_loss_list.append(cv_score_agg_func(list(zip(val_loss_folds,[None]*len(val_loss_folds))))[0])
|
||||
break
|
||||
val_loss = np.max(val_loss_list)
|
||||
n = total_fold_num
|
||||
if log_training_metric or not isinstance(eval_metric, str):
|
||||
if isinstance(total_metric, dict):
|
||||
metric = {k: v / n for k, v in total_metric.items()}
|
||||
if len(log_metric_folds):
|
||||
metric = cv_score_agg_func(list(zip([0]*len(log_metric_folds),log_metric_folds)))[1]
|
||||
else:
|
||||
metric = total_metric / n
|
||||
pred_time /= n
|
||||
@ -563,7 +577,7 @@ def compute_estimator(
|
||||
best_val_loss=np.Inf,
|
||||
n_jobs=1,
|
||||
estimator_class=None,
|
||||
cv_strategy=None,
|
||||
cv_score_agg_func=None,
|
||||
log_training_metric=False,
|
||||
fit_kwargs={},
|
||||
):
|
||||
@ -610,7 +624,7 @@ def compute_estimator(
|
||||
task,
|
||||
eval_metric,
|
||||
best_val_loss,
|
||||
cv_strategy,
|
||||
cv_score_agg_func,
|
||||
log_training_metric=log_training_metric,
|
||||
fit_kwargs=fit_kwargs,
|
||||
)
|
||||
|
Loading…
x
Reference in New Issue
Block a user