mirror of
https://github.com/microsoft/autogen.git
synced 2025-11-11 15:24:16 +00:00
zero-shot AutoML in readme (#474)
* zero-shot AutoML in readme * use pydoc-markdown 4.5.0 to avoid error in 4.6.0
This commit is contained in:
parent
31ac984c4b
commit
f0b0cae682
4
.github/workflows/deploy-website.yml
vendored
4
.github/workflows/deploy-website.yml
vendored
@ -28,7 +28,7 @@ jobs:
|
|||||||
- name: pydoc-markdown install
|
- name: pydoc-markdown install
|
||||||
run: |
|
run: |
|
||||||
python -m pip install --upgrade pip
|
python -m pip install --upgrade pip
|
||||||
pip install pydoc-markdown
|
pip install pydoc-markdown==4.5.0
|
||||||
- name: pydoc-markdown run
|
- name: pydoc-markdown run
|
||||||
run: |
|
run: |
|
||||||
pydoc-markdown
|
pydoc-markdown
|
||||||
@ -64,7 +64,7 @@ jobs:
|
|||||||
- name: pydoc-markdown install
|
- name: pydoc-markdown install
|
||||||
run: |
|
run: |
|
||||||
python -m pip install --upgrade pip
|
python -m pip install --upgrade pip
|
||||||
pip install pydoc-markdown
|
pip install pydoc-markdown==4.5.0
|
||||||
- name: pydoc-markdown run
|
- name: pydoc-markdown run
|
||||||
run: |
|
run: |
|
||||||
pydoc-markdown
|
pydoc-markdown
|
||||||
|
|||||||
18
README.md
18
README.md
@ -33,7 +33,7 @@ FLAML requires **Python version >= 3.6**. It can be installed from pip:
|
|||||||
pip install flaml
|
pip install flaml
|
||||||
```
|
```
|
||||||
|
|
||||||
To run the [`notebook example`](https://github.com/microsoft/FLAML/tree/main/notebook),
|
To run the [`notebook examples`](https://github.com/microsoft/FLAML/tree/main/notebook),
|
||||||
install flaml with the [notebook] option:
|
install flaml with the [notebook] option:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
@ -43,7 +43,7 @@ pip install flaml[notebook]
|
|||||||
## Quickstart
|
## Quickstart
|
||||||
|
|
||||||
* With three lines of code, you can start using this economical and fast
|
* With three lines of code, you can start using this economical and fast
|
||||||
AutoML engine as a scikit-learn style estimator.
|
AutoML engine as a [scikit-learn style estimator](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML).
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from flaml import AutoML
|
from flaml import AutoML
|
||||||
@ -52,19 +52,29 @@ automl.fit(X_train, y_train, task="classification")
|
|||||||
```
|
```
|
||||||
|
|
||||||
* You can restrict the learners and use FLAML as a fast hyperparameter tuning
|
* You can restrict the learners and use FLAML as a fast hyperparameter tuning
|
||||||
tool for XGBoost, LightGBM, Random Forest etc. or a customized learner.
|
tool for XGBoost, LightGBM, Random Forest etc. or a [customized learner](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML#estimator-and-search-space).
|
||||||
|
|
||||||
```python
|
```python
|
||||||
automl.fit(X_train, y_train, task="classification", estimator_list=["lgbm"])
|
automl.fit(X_train, y_train, task="classification", estimator_list=["lgbm"])
|
||||||
```
|
```
|
||||||
|
|
||||||
* You can also run generic hyperparameter tuning for a custom function.
|
* You can also run generic hyperparameter tuning for a [custom function](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function).
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from flaml import tune
|
from flaml import tune
|
||||||
tune.run(evaluation_function, config={…}, low_cost_partial_config={…}, time_budget_s=3600)
|
tune.run(evaluation_function, config={…}, low_cost_partial_config={…}, time_budget_s=3600)
|
||||||
```
|
```
|
||||||
|
|
||||||
|
* [Zero-shot AutoML](https://microsoft.github.io/FLAML/docs/Use-Cases/Zero-Shot-AutoML) allows using the existing training API from lightgbm, xgboost etc. while getting the benefit of AutoML in choosing high-performance hyperparameter configurations per task.
|
||||||
|
|
||||||
|
```python
|
||||||
|
from flaml.default import LGBMRegressor
|
||||||
|
# Use LGBMRegressor in the same way as you use lightgbm.LGBMRegressor.
|
||||||
|
estimator = LGBMRegressor()
|
||||||
|
# The hyperparameters are automatically set according to the training data.
|
||||||
|
estimator.fit(X_train, y_train)
|
||||||
|
```
|
||||||
|
|
||||||
## Documentation
|
## Documentation
|
||||||
|
|
||||||
You can find a detailed documentation about FLAML [here](https://microsoft.github.io/FLAML/) where you can find the API documentation, use cases and examples.
|
You can find a detailed documentation about FLAML [here](https://microsoft.github.io/FLAML/) where you can find the API documentation, use cases and examples.
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user