mirror of
https://github.com/microsoft/autogen.git
synced 2025-12-24 21:49:42 +00:00
parent
8bcdb2a0c2
commit
f28d093522
@ -72,11 +72,11 @@ class BaseEstimator:
|
||||
|
||||
def _fit(self, X_train, y_train, **kwargs):
|
||||
|
||||
curent_time = time.time()
|
||||
current_time = time.time()
|
||||
X_train = self._preprocess(X_train)
|
||||
model = self.estimator_class(**self.params)
|
||||
model.fit(X_train, y_train, **kwargs)
|
||||
train_time = time.time() - curent_time
|
||||
train_time = time.time() - current_time
|
||||
self._model = model
|
||||
return train_time
|
||||
|
||||
@ -187,16 +187,16 @@ class LGBMEstimator(BaseEstimator):
|
||||
'domain': tune.qloguniform(lower=4, upper=upper, q=1),
|
||||
'init_value': 4,
|
||||
},
|
||||
'min_child_weight': {
|
||||
'domain': tune.loguniform(lower=0.001, upper=20.0),
|
||||
'init_value': 20.0,
|
||||
'min_data_in_leaf': {
|
||||
'domain': tune.qloguniform(lower=2, upper=2**7, q=1),
|
||||
'init_value': 20,
|
||||
},
|
||||
'learning_rate': {
|
||||
'domain': tune.loguniform(lower=0.01, upper=1.0),
|
||||
'domain': tune.loguniform(lower=1/1024, upper=1.0),
|
||||
'init_value': 0.1,
|
||||
},
|
||||
'subsample': {
|
||||
'domain': tune.uniform(lower=0.6, upper=1.0),
|
||||
'domain': tune.uniform(lower=0.1, upper=1.0),
|
||||
'init_value': 1.0,
|
||||
},
|
||||
'log_max_bin': {
|
||||
@ -204,15 +204,15 @@ class LGBMEstimator(BaseEstimator):
|
||||
'init_value': 8,
|
||||
},
|
||||
'colsample_bytree': {
|
||||
'domain': tune.uniform(lower=0.7, upper=1.0),
|
||||
'domain': tune.uniform(lower=0.01, upper=1.0),
|
||||
'init_value': 1.0,
|
||||
},
|
||||
'reg_alpha': {
|
||||
'domain': tune.loguniform(lower=1e-10, upper=1.0),
|
||||
'init_value': 1e-10,
|
||||
'domain': tune.loguniform(lower=1/1024, upper=1024),
|
||||
'init_value': 1/1024,
|
||||
},
|
||||
'reg_lambda': {
|
||||
'domain': tune.loguniform(lower=1e-10, upper=1.0),
|
||||
'domain': tune.loguniform(lower=1/1024, upper=1024),
|
||||
'init_value': 1.0,
|
||||
},
|
||||
}
|
||||
@ -224,8 +224,8 @@ class LGBMEstimator(BaseEstimator):
|
||||
return (max_leaves*3 + (max_leaves-1)*4 + 1.0)*n_estimators*8
|
||||
|
||||
def __init__(self, task='binary:logistic', n_jobs=1,
|
||||
n_estimators=2, max_leaves=2, min_child_weight=1e-3, learning_rate=0.1,
|
||||
subsample=1.0, reg_lambda=1.0, reg_alpha=0.0, colsample_bylevel=1.0,
|
||||
n_estimators=2, max_leaves=2, min_data_in_leaf=20, learning_rate=0.1,
|
||||
subsample=1.0, reg_lambda=1.0, reg_alpha=0.0,
|
||||
colsample_bytree=1.0, log_max_bin=8, **params):
|
||||
super().__init__(task, **params)
|
||||
# Default: ‘regression’ for LGBMRegressor,
|
||||
@ -239,13 +239,13 @@ class LGBMEstimator(BaseEstimator):
|
||||
else: objective = 'regression'
|
||||
self.params = {
|
||||
"n_estimators": int(round(n_estimators)),
|
||||
"num_leaves": params.get('num_leaves', int(round(max_leaves))),
|
||||
"max_leaves": int(round(max_leaves)),
|
||||
'objective': params.get("objective", objective),
|
||||
'n_jobs': n_jobs,
|
||||
'learning_rate': float(learning_rate),
|
||||
'reg_alpha': float(reg_alpha),
|
||||
'reg_lambda': float(reg_lambda),
|
||||
'min_child_weight': float(min_child_weight),
|
||||
'min_data_in_leaf': int(round(min_data_in_leaf)),
|
||||
'colsample_bytree':float(colsample_bytree),
|
||||
'subsample': float(subsample),
|
||||
}
|
||||
@ -310,31 +310,31 @@ class XGBoostEstimator(SKLearnEstimator):
|
||||
'init_value': 4,
|
||||
},
|
||||
'min_child_weight': {
|
||||
'domain': tune.loguniform(lower=0.001, upper=20.0),
|
||||
'init_value': 20.0,
|
||||
'domain': tune.loguniform(lower=0.001, upper=128),
|
||||
'init_value': 1,
|
||||
},
|
||||
'learning_rate': {
|
||||
'domain': tune.loguniform(lower=0.01, upper=1.0),
|
||||
'domain': tune.loguniform(lower=1/1024, upper=1.0),
|
||||
'init_value': 0.1,
|
||||
},
|
||||
'subsample': {
|
||||
'domain': tune.uniform(lower=0.6, upper=1.0),
|
||||
'domain': tune.uniform(lower=0.1, upper=1.0),
|
||||
'init_value': 1.0,
|
||||
},
|
||||
'colsample_bylevel': {
|
||||
'domain': tune.uniform(lower=0.6, upper=1.0),
|
||||
'domain': tune.uniform(lower=0.01, upper=1.0),
|
||||
'init_value': 1.0,
|
||||
},
|
||||
'colsample_bytree': {
|
||||
'domain': tune.uniform(lower=0.7, upper=1.0),
|
||||
'domain': tune.uniform(lower=0.01, upper=1.0),
|
||||
'init_value': 1.0,
|
||||
},
|
||||
'reg_alpha': {
|
||||
'domain': tune.loguniform(lower=1e-10, upper=1.0),
|
||||
'init_value': 1e-10,
|
||||
'domain': tune.loguniform(lower=1/1024, upper=1024),
|
||||
'init_value': 1/1024,
|
||||
},
|
||||
'reg_lambda': {
|
||||
'domain': tune.loguniform(lower=1e-10, upper=1.0),
|
||||
'domain': tune.loguniform(lower=1/1024, upper=1024),
|
||||
'init_value': 1.0,
|
||||
},
|
||||
}
|
||||
|
||||
@ -200,6 +200,7 @@ class FLOW2(Searcher):
|
||||
def step_lower_bound(self) -> float:
|
||||
step_lb = self._step_lb
|
||||
for key in self._tunable_keys:
|
||||
if key not in self.best_config: continue
|
||||
domain = self.space[key]
|
||||
sampler = domain.get_sampler()
|
||||
if isinstance(sampler, sample.Quantized):
|
||||
@ -499,7 +500,7 @@ class FLOW2(Searcher):
|
||||
|
||||
def rand_vector_unit_sphere(self, dim) -> np.ndarray:
|
||||
vec = self._random.normal(0, 1, dim)
|
||||
mag = np.linalg.norm(vec)
|
||||
mag = np.linalg.norm(vec)
|
||||
return vec/mag
|
||||
|
||||
def suggest(self, trial_id: str) -> Optional[Dict]:
|
||||
@ -518,7 +519,6 @@ class FLOW2(Searcher):
|
||||
self._resource * self.resource_multiple_factor)
|
||||
config = self.best_config.copy()
|
||||
config[self.prune_attr] = self._resource
|
||||
# self.incumbent[self.prune_attr] = self._resource
|
||||
self._direction_tried = None
|
||||
self._configs[trial_id] = config
|
||||
return config
|
||||
|
||||
@ -1 +1 @@
|
||||
__version__ = "0.2.9"
|
||||
__version__ = "0.2.10"
|
||||
|
||||
@ -4,7 +4,7 @@ ws = Workspace.from_config()
|
||||
compute_target = ws.compute_targets['V100-4']
|
||||
# compute_target = ws.compute_targets['K80']
|
||||
command = [
|
||||
"pip install torch transformers datasets flaml[blendsearch,ray] ax-platform sqlalchemy && ",
|
||||
"pip install torch transformers datasets flaml[blendsearch,ray] && ",
|
||||
"python test_electra.py"]
|
||||
|
||||
config = ScriptRunConfig(
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user