mirror of
https://github.com/microsoft/autogen.git
synced 2025-11-03 03:10:04 +00:00
random search (#213)
* random search as a child class of CFO * random search in sequential search of AutoML * time to find best model as a property of AutoML
This commit is contained in:
parent
0ba58e0ace
commit
f3e50136e8
@ -363,7 +363,7 @@ class AutoML:
|
||||
|
||||
Returns:
|
||||
An object with `predict()` and `predict_proba()` method (for
|
||||
classification), storing the best trained model for estimator_name.
|
||||
classification), storing the best trained model for estimator_name.
|
||||
"""
|
||||
state = self._search_states.get(estimator_name)
|
||||
return state and getattr(state, "trained_estimator", None)
|
||||
@ -414,6 +414,11 @@ class AutoML:
|
||||
return attr.classes_.tolist()
|
||||
return None
|
||||
|
||||
@property
|
||||
def time_to_find_best_model(self) -> float:
|
||||
"""time taken to find best model in seconds"""
|
||||
return self.__dict__.get("_time_taken_best_iter")
|
||||
|
||||
def predict(self, X_test):
|
||||
"""Predict label from features.
|
||||
|
||||
@ -1374,8 +1379,7 @@ class AutoML:
|
||||
a simple customized search space. When set to 'bs', BlendSearch
|
||||
is used. BlendSearch can be tried when the search space is
|
||||
complex, for example, containing multiple disjoint, discontinuous
|
||||
subspaces. When set to 'random' and the argument
|
||||
`n_concurrent_trials` is larger than 1, random search is used.
|
||||
subspaces. When set to 'random', random search is used.
|
||||
starting_points: A dictionary to specify the starting hyperparameter
|
||||
config for the estimators.
|
||||
Keys are the name of the estimators, and values are the starting
|
||||
@ -1717,6 +1721,8 @@ class AutoML:
|
||||
from .searcher.suggestion import OptunaSearch as SearchAlgo
|
||||
elif "bs" == self._hpo_method:
|
||||
from flaml import BlendSearch as SearchAlgo
|
||||
elif "random" == self._hpo_method:
|
||||
from flaml.searcher import RandomSearch as SearchAlgo
|
||||
elif "cfocat" == self._hpo_method:
|
||||
from flaml.searcher.cfo_cat import CFOCat as SearchAlgo
|
||||
else:
|
||||
@ -1784,7 +1790,7 @@ class AutoML:
|
||||
else [search_state.init_config]
|
||||
)
|
||||
low_cost_partial_config = search_state.low_cost_partial_config
|
||||
if self._hpo_method in ("bs", "cfo", "grid", "cfocat"):
|
||||
if self._hpo_method in ("bs", "cfo", "grid", "cfocat", "random"):
|
||||
algo = SearchAlgo(
|
||||
metric="val_loss",
|
||||
mode="min",
|
||||
|
||||
@ -1,3 +1,3 @@
|
||||
from .blendsearch import CFO, BlendSearch, BlendSearchTuner
|
||||
from .blendsearch import CFO, BlendSearch, BlendSearchTuner, RandomSearch
|
||||
from .flow2 import FLOW2
|
||||
from .online_searcher import ChampionFrontierSearcher
|
||||
|
||||
@ -1024,3 +1024,19 @@ class CFO(BlendSearchTuner):
|
||||
self._candidate_start_points[trial_id] = result
|
||||
if len(self._search_thread_pool) < 2 and not self._points_to_evaluate:
|
||||
self._create_thread_from_best_candidate()
|
||||
|
||||
|
||||
class RandomSearch(CFO):
|
||||
def suggest(self, trial_id: str) -> Optional[Dict]:
|
||||
if self._points_to_evaluate:
|
||||
return super().suggest(trial_id)
|
||||
config, _ = self._ls.complete_config({})
|
||||
return config
|
||||
|
||||
def on_trial_complete(
|
||||
self, trial_id: str, result: Optional[Dict] = None, error: bool = False
|
||||
):
|
||||
return
|
||||
|
||||
def on_trial_result(self, trial_id: str, result: Dict):
|
||||
return
|
||||
|
||||
@ -1,50 +1,66 @@
|
||||
from openml.exceptions import OpenMLServerException
|
||||
|
||||
|
||||
def test_automl(budget=5, dataset_format='dataframe', hpo_method=None):
|
||||
def test_automl(budget=5, dataset_format="dataframe", hpo_method=None):
|
||||
from flaml.data import load_openml_dataset
|
||||
|
||||
try:
|
||||
X_train, X_test, y_train, y_test = load_openml_dataset(
|
||||
dataset_id=1169, data_dir='test/', dataset_format=dataset_format)
|
||||
dataset_id=1169, data_dir="test/", dataset_format=dataset_format
|
||||
)
|
||||
except OpenMLServerException:
|
||||
print("OpenMLServerException raised")
|
||||
return
|
||||
''' import AutoML class from flaml package '''
|
||||
""" import AutoML class from flaml package """
|
||||
from flaml import AutoML
|
||||
|
||||
automl = AutoML()
|
||||
settings = {
|
||||
"time_budget": budget, # total running time in seconds
|
||||
"metric": 'accuracy', # primary metrics can be chosen from: ['accuracy','roc_auc','roc_auc_ovr','roc_auc_ovo','f1','log_loss','mae','mse','r2']
|
||||
"task": 'classification', # task type
|
||||
"log_file_name": 'airlines_experiment.log', # flaml log file
|
||||
"seed": 7654321, # random seed
|
||||
'hpo_method': hpo_method
|
||||
"metric": "accuracy", # primary metrics can be chosen from: ['accuracy','roc_auc','roc_auc_ovr','roc_auc_ovo','f1','log_loss','mae','mse','r2']
|
||||
"task": "classification", # task type
|
||||
"log_file_name": "airlines_experiment.log", # flaml log file
|
||||
"seed": 7654321, # random seed
|
||||
"hpo_method": hpo_method,
|
||||
}
|
||||
'''The main flaml automl API'''
|
||||
"""The main flaml automl API"""
|
||||
automl.fit(X_train=X_train, y_train=y_train, **settings)
|
||||
''' retrieve best config and best learner'''
|
||||
print('Best ML leaner:', automl.best_estimator)
|
||||
print('Best hyperparmeter config:', automl.best_config)
|
||||
print('Best accuracy on validation data: {0:.4g}'.format(1 - automl.best_loss))
|
||||
print('Training duration of best run: {0:.4g} s'.format(automl.best_config_train_time))
|
||||
""" retrieve best config and best learner """
|
||||
print("Best ML leaner:", automl.best_estimator)
|
||||
print("Best hyperparmeter config:", automl.best_config)
|
||||
print("Best accuracy on validation data: {0:.4g}".format(1 - automl.best_loss))
|
||||
print(
|
||||
"Training duration of best run: {0:.4g} s".format(automl.best_config_train_time)
|
||||
)
|
||||
print(automl.model.estimator)
|
||||
''' pickle and save the automl object '''
|
||||
print("time taken to find best model:", automl.time_to_find_best_model)
|
||||
""" pickle and save the automl object """
|
||||
import pickle
|
||||
with open('automl.pkl', 'wb') as f:
|
||||
|
||||
with open("automl.pkl", "wb") as f:
|
||||
pickle.dump(automl, f, pickle.HIGHEST_PROTOCOL)
|
||||
''' compute predictions of testing dataset '''
|
||||
""" compute predictions of testing dataset """
|
||||
y_pred = automl.predict(X_test)
|
||||
print('Predicted labels', y_pred)
|
||||
print('True labels', y_test)
|
||||
print("Predicted labels", y_pred)
|
||||
print("True labels", y_test)
|
||||
y_pred_proba = automl.predict_proba(X_test)[:, 1]
|
||||
''' compute different metric values on testing dataset'''
|
||||
""" compute different metric values on testing dataset """
|
||||
from flaml.ml import sklearn_metric_loss_score
|
||||
print('accuracy', '=', 1 - sklearn_metric_loss_score('accuracy', y_pred, y_test))
|
||||
print('roc_auc', '=', 1 - sklearn_metric_loss_score('roc_auc', y_pred_proba, y_test))
|
||||
print('log_loss', '=', sklearn_metric_loss_score('log_loss', y_pred_proba, y_test))
|
||||
|
||||
print("accuracy", "=", 1 - sklearn_metric_loss_score("accuracy", y_pred, y_test))
|
||||
print(
|
||||
"roc_auc", "=", 1 - sklearn_metric_loss_score("roc_auc", y_pred_proba, y_test)
|
||||
)
|
||||
print("log_loss", "=", sklearn_metric_loss_score("log_loss", y_pred_proba, y_test))
|
||||
from flaml.data import get_output_from_log
|
||||
time_history, best_valid_loss_history, valid_loss_history, config_history, metric_history = \
|
||||
get_output_from_log(filename=settings['log_file_name'], time_budget=60)
|
||||
|
||||
(
|
||||
time_history,
|
||||
best_valid_loss_history,
|
||||
valid_loss_history,
|
||||
config_history,
|
||||
metric_history,
|
||||
) = get_output_from_log(filename=settings["log_file_name"], time_budget=60)
|
||||
for config in config_history:
|
||||
print(config)
|
||||
print(automl.prune_attr)
|
||||
@ -53,37 +69,40 @@ def test_automl(budget=5, dataset_format='dataframe', hpo_method=None):
|
||||
|
||||
|
||||
def test_automl_array():
|
||||
test_automl(5, 'array', 'bs')
|
||||
test_automl(5, "array", "bs")
|
||||
|
||||
|
||||
def test_mlflow():
|
||||
import subprocess
|
||||
import sys
|
||||
|
||||
subprocess.check_call([sys.executable, "-m", "pip", "install", "mlflow"])
|
||||
import mlflow
|
||||
from flaml.data import load_openml_task
|
||||
|
||||
try:
|
||||
X_train, X_test, y_train, y_test = load_openml_task(
|
||||
task_id=7592, data_dir='test/')
|
||||
task_id=7592, data_dir="test/"
|
||||
)
|
||||
except OpenMLServerException:
|
||||
print("OpenMLServerException raised")
|
||||
return
|
||||
''' import AutoML class from flaml package '''
|
||||
""" import AutoML class from flaml package """
|
||||
from flaml import AutoML
|
||||
|
||||
automl = AutoML()
|
||||
settings = {
|
||||
"time_budget": 5, # total running time in seconds
|
||||
"metric": 'accuracy', # primary metrics can be chosen from: ['accuracy','roc_auc','roc_auc_ovr','roc_auc_ovo','f1','log_loss','mae','mse','r2']
|
||||
"estimator_list": ['lgbm', 'rf', 'xgboost'], # list of ML learners
|
||||
"task": 'classification', # task type
|
||||
"metric": "accuracy", # primary metrics can be chosen from: ['accuracy','roc_auc','roc_auc_ovr','roc_auc_ovo','f1','log_loss','mae','mse','r2']
|
||||
"estimator_list": ["lgbm", "rf", "xgboost"], # list of ML learners
|
||||
"task": "classification", # task type
|
||||
"sample": False, # whether to subsample training data
|
||||
"log_file_name": 'adult.log', # flaml log file
|
||||
"log_file_name": "adult.log", # flaml log file
|
||||
}
|
||||
mlflow.set_experiment("flaml")
|
||||
with mlflow.start_run():
|
||||
'''The main flaml automl API'''
|
||||
automl.fit(
|
||||
X_train=X_train, y_train=y_train, **settings)
|
||||
"""The main flaml automl API"""
|
||||
automl.fit(X_train=X_train, y_train=y_train, **settings)
|
||||
# subprocess.check_call([sys.executable, "-m", "pip", "uninstall", "mlflow"])
|
||||
automl._mem_thres = 0
|
||||
print(automl.trainable(automl.points_to_evaluate[0]))
|
||||
|
||||
@ -12,58 +12,63 @@ dataset = "credit-g"
|
||||
|
||||
|
||||
class XGBoost2D(XGBoostSklearnEstimator):
|
||||
|
||||
@classmethod
|
||||
def search_space(cls, data_size, task):
|
||||
upper = min(32768, int(data_size))
|
||||
return {
|
||||
'n_estimators': {
|
||||
'domain': tune.lograndint(lower=4, upper=upper),
|
||||
'low_cost_init_value': 4,
|
||||
"n_estimators": {
|
||||
"domain": tune.lograndint(lower=4, upper=upper),
|
||||
"low_cost_init_value": 4,
|
||||
},
|
||||
'max_leaves': {
|
||||
'domain': tune.lograndint(lower=4, upper=upper),
|
||||
'low_cost_init_value': 4,
|
||||
"max_leaves": {
|
||||
"domain": tune.lograndint(lower=4, upper=upper),
|
||||
"low_cost_init_value": 4,
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
def test_simple(method=None):
|
||||
automl = AutoML()
|
||||
automl.add_learner(learner_name='XGBoost2D',
|
||||
learner_class=XGBoost2D)
|
||||
automl.add_learner(learner_name="XGBoost2D", learner_class=XGBoost2D)
|
||||
|
||||
automl_settings = {
|
||||
"estimator_list": ['XGBoost2D'],
|
||||
"task": 'classification',
|
||||
"estimator_list": ["XGBoost2D"],
|
||||
"task": "classification",
|
||||
"log_file_name": f"test/xgboost2d_{dataset}_{method}.log",
|
||||
"n_jobs": 1,
|
||||
"hpo_method": method,
|
||||
"log_type": "all",
|
||||
"retrain_full": "budget",
|
||||
"keep_search_state": True,
|
||||
"time_budget": 1
|
||||
"time_budget": 1,
|
||||
}
|
||||
from sklearn.externals._arff import ArffException
|
||||
|
||||
try:
|
||||
X, y = fetch_openml(name=dataset, return_X_y=True)
|
||||
except (ArffException, ValueError):
|
||||
from sklearn.datasets import load_wine
|
||||
|
||||
X, y = load_wine(return_X_y=True)
|
||||
X_train, X_test, y_train, y_test = train_test_split(
|
||||
X, y, test_size=0.33, random_state=42)
|
||||
X, y, test_size=0.33, random_state=42
|
||||
)
|
||||
automl.fit(X_train=X_train, y_train=y_train, **automl_settings)
|
||||
print(automl.estimator_list)
|
||||
print(automl.search_space)
|
||||
print(automl.points_to_evaluate)
|
||||
config = automl.best_config.copy()
|
||||
config['learner'] = automl.best_estimator
|
||||
config["learner"] = automl.best_estimator
|
||||
automl.trainable(config)
|
||||
from flaml import tune
|
||||
from flaml.automl import size
|
||||
from functools import partial
|
||||
|
||||
analysis = tune.run(
|
||||
automl.trainable, automl.search_space, metric='val_loss', mode="min",
|
||||
automl.trainable,
|
||||
automl.search_space,
|
||||
metric="val_loss",
|
||||
mode="min",
|
||||
low_cost_partial_config=automl.low_cost_partial_config,
|
||||
points_to_evaluate=automl.points_to_evaluate,
|
||||
cat_hp_cost=automl.cat_hp_cost,
|
||||
@ -71,8 +76,10 @@ def test_simple(method=None):
|
||||
min_resource=automl.min_resource,
|
||||
max_resource=automl.max_resource,
|
||||
time_budget_s=automl._state.time_budget,
|
||||
config_constraints=[(partial(size, automl._state), '<=', automl._mem_thres)],
|
||||
metric_constraints=automl.metric_constraints, num_samples=5)
|
||||
config_constraints=[(partial(size, automl._state), "<=", automl._mem_thres)],
|
||||
metric_constraints=automl.metric_constraints,
|
||||
num_samples=5,
|
||||
)
|
||||
print(analysis.trials[-1])
|
||||
|
||||
|
||||
@ -80,6 +87,10 @@ def test_optuna():
|
||||
test_simple(method="optuna")
|
||||
|
||||
|
||||
def test_random():
|
||||
test_simple(method="random")
|
||||
|
||||
|
||||
def test_grid():
|
||||
test_simple(method="grid")
|
||||
|
||||
|
||||
@ -1,4 +1,3 @@
|
||||
from flaml.searcher.blendsearch import CFO
|
||||
import numpy as np
|
||||
|
||||
try:
|
||||
@ -8,8 +7,9 @@ try:
|
||||
from ray.tune import sample
|
||||
except (ImportError, AssertionError):
|
||||
from flaml.tune import sample
|
||||
|
||||
from flaml.searcher.suggestion import OptunaSearch, Searcher, ConcurrencyLimiter
|
||||
from flaml.searcher.blendsearch import BlendSearch
|
||||
from flaml.searcher.blendsearch import BlendSearch, CFO, RandomSearch
|
||||
|
||||
def define_search_space(trial):
|
||||
trial.suggest_float("a", 6, 8)
|
||||
@ -135,3 +135,14 @@ except (ImportError, AssertionError):
|
||||
},
|
||||
}
|
||||
)
|
||||
np.random.seed(7654321)
|
||||
searcher = RandomSearch(
|
||||
space=config,
|
||||
points_to_evaluate=[{"a": 7, "b": 1e-3}, {"a": 6, "b": 3e-4}],
|
||||
)
|
||||
print(searcher.suggest("t1"))
|
||||
print(searcher.suggest("t2"))
|
||||
print(searcher.suggest("t3"))
|
||||
print(searcher.suggest("t4"))
|
||||
searcher.on_trial_complete({"t1"}, {})
|
||||
searcher.on_trial_result({"t2"}, {})
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user