diff --git a/flaml/automl.py b/flaml/automl.py index f77329e3c..825561445 100644 --- a/flaml/automl.py +++ b/flaml/automl.py @@ -1578,7 +1578,6 @@ class AutoML: ) logger.info("List of ML learners in AutoML Run: {}".format(estimator_list)) self.estimator_list = estimator_list - self._hpo_method = hpo_method or ("cfo" if n_concurrent_trials == 1 else "bs") self._state.time_budget = time_budget or 1e10 self._active_estimators = estimator_list.copy() self._ensemble = ensemble @@ -1592,7 +1591,8 @@ class AutoML: self._state.n_jobs = n_jobs self._n_concurrent_trials = n_concurrent_trials self._early_stop = early_stop - self._use_ray = use_ray or self._n_concurrent_trials > 1 + self._use_ray = use_ray or n_concurrent_trials > 1 + self._hpo_method = hpo_method or ("bs" if self._use_ray else "cfo") if log_file_name: with training_log_writer(log_file_name, append_log) as save_helper: self._training_log = save_helper @@ -1709,7 +1709,7 @@ class AutoML: resources_per_trial=resources_per_trial, time_budget_s=self._state.time_budget, num_samples=self._max_iter, - verbose=max(self.verbose - 3, 0), + verbose=max(self.verbose - 2, 0), raise_on_failed_trial=False, ) # logger.info([trial.last_result for trial in analysis.trials]) @@ -2297,7 +2297,7 @@ class AutoML: speed = delta_loss / delta_time if speed: estimated_cost = max(2 * gap / speed, estimated_cost) - estimated_cost == estimated_cost or 1e-9 + estimated_cost = estimated_cost or 1e-9 inv.append(1 / estimated_cost) else: estimated_cost = self._eci[i]