diff --git a/notebook/integrate_sklearn.ipynb b/notebook/integrate_sklearn.ipynb index 4f0e0b98f..5601b791a 100644 --- a/notebook/integrate_sklearn.ipynb +++ b/notebook/integrate_sklearn.ipynb @@ -93,14 +93,14 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "load dataset from ./openml_ds1169.pkl\n", + "download dataset from openml\n", "Dataset name: airlines\n", "X_train.shape: (404537, 7), y_train.shape: (404537,);\n", "X_test.shape: (134846, 7), y_test.shape: (134846,)\n" @@ -115,7 +115,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -124,7 +124,7 @@ "array([ 12., 2648., 4., 15., 4., 450., 67.], dtype=float32)" ] }, - "execution_count": 5, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -142,29 +142,74 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ - "
Pipeline(steps=[('imputuer', SimpleImputer()),\n", - " ('standardizer', StandardScaler()),\n", - " ('automl',)])
SimpleImputer()
StandardScaler()
Pipeline(steps=[('imputuer', SimpleImputer()),\n", + " ('standardizer', StandardScaler()),\n", + " ('automl',\n", + " AutoML(append_log=False, auto_augment=True, custom_hp={},\n", + " early_stop=False, ensemble=False, estimator_list='auto',\n", + " eval_method='auto', fit_kwargs_by_estimator={},\n", + " hpo_method='auto', keep_search_state=False,\n", + " learner_selector='sample', log_file_name='',\n", + " log_training_metric=False, log_type='better',\n", + " max_iter=None, mem_thres=4294967296, metric='auto',\n", + " metric_constraints=[], min_sample_size=10000,\n", + " model_history=False, n_concurrent_trials=1, n_jobs=-1,\n", + " n_splits=5, pred_time_limit=inf, retrain_full=True,\n", + " sample=True, split_ratio=0.1, split_type='auto',\n", + " starting_points='static', task='classification', ...))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
Pipeline(steps=[('imputuer', SimpleImputer()),\n", + " ('standardizer', StandardScaler()),\n", + " ('automl',\n", + " AutoML(append_log=False, auto_augment=True, custom_hp={},\n", + " early_stop=False, ensemble=False, estimator_list='auto',\n", + " eval_method='auto', fit_kwargs_by_estimator={},\n", + " hpo_method='auto', keep_search_state=False,\n", + " learner_selector='sample', log_file_name='',\n", + " log_training_metric=False, log_type='better',\n", + " max_iter=None, mem_thres=4294967296, metric='auto',\n", + " metric_constraints=[], min_sample_size=10000,\n", + " model_history=False, n_concurrent_trials=1, n_jobs=-1,\n", + " n_splits=5, pred_time_limit=inf, retrain_full=True,\n", + " sample=True, split_ratio=0.1, split_type='auto',\n", + " starting_points='static', task='classification', ...))])
SimpleImputer()
StandardScaler()
AutoML(append_log=False, auto_augment=True, custom_hp={}, early_stop=False,\n", + " ensemble=False, estimator_list='auto', eval_method='auto',\n", + " fit_kwargs_by_estimator={}, hpo_method='auto', keep_search_state=False,\n", + " learner_selector='sample', log_file_name='', log_training_metric=False,\n", + " log_type='better', max_iter=None, mem_thres=4294967296, metric='auto',\n", + " metric_constraints=[], min_sample_size=10000, model_history=False,\n", + " n_concurrent_trials=1, n_jobs=-1, n_splits=5, pred_time_limit=inf,\n", + " retrain_full=True, sample=True, split_ratio=0.1, split_type='auto',\n", + " starting_points='static', task='classification', ...)
Pipeline(steps=[('imputuer', SimpleImputer()),\n", - " ('standardizer', StandardScaler()),\n", - " ('automl',)])
SimpleImputer()
StandardScaler()
Pipeline(steps=[('imputuer', SimpleImputer()),\n", + " ('standardizer', StandardScaler()),\n", + " ('automl',\n", + " AutoML(append_log=False, auto_augment=True, custom_hp={},\n", + " early_stop=False, ensemble=False, estimator_list='auto',\n", + " eval_method='auto', fit_kwargs_by_estimator={},\n", + " hpo_method='auto', keep_search_state=False,\n", + " learner_selector='sample', log_file_name='',\n", + " log_training_metric=False, log_type='better',\n", + " max_iter=None, mem_thres=4294967296, metric='auto',\n", + " metric_constraints=[], min_sample_size=10000,\n", + " model_history=False, n_concurrent_trials=1, n_jobs=-1,\n", + " n_splits=5, pred_time_limit=inf, retrain_full=True,\n", + " sample=True, split_ratio=0.1, split_type='auto',\n", + " starting_points='static', task='classification', ...))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
Pipeline(steps=[('imputuer', SimpleImputer()),\n", + " ('standardizer', StandardScaler()),\n", + " ('automl',\n", + " AutoML(append_log=False, auto_augment=True, custom_hp={},\n", + " early_stop=False, ensemble=False, estimator_list='auto',\n", + " eval_method='auto', fit_kwargs_by_estimator={},\n", + " hpo_method='auto', keep_search_state=False,\n", + " learner_selector='sample', log_file_name='',\n", + " log_training_metric=False, log_type='better',\n", + " max_iter=None, mem_thres=4294967296, metric='auto',\n", + " metric_constraints=[], min_sample_size=10000,\n", + " model_history=False, n_concurrent_trials=1, n_jobs=-1,\n", + " n_splits=5, pred_time_limit=inf, retrain_full=True,\n", + " sample=True, split_ratio=0.1, split_type='auto',\n", + " starting_points='static', task='classification', ...))])
SimpleImputer()
StandardScaler()
AutoML(append_log=False, auto_augment=True, custom_hp={}, early_stop=False,\n", + " ensemble=False, estimator_list='auto', eval_method='auto',\n", + " fit_kwargs_by_estimator={}, hpo_method='auto', keep_search_state=False,\n", + " learner_selector='sample', log_file_name='', log_training_metric=False,\n", + " log_type='better', max_iter=None, mem_thres=4294967296, metric='auto',\n", + " metric_constraints=[], min_sample_size=10000, model_history=False,\n", + " n_concurrent_trials=1, n_jobs=-1, n_splits=5, pred_time_limit=inf,\n", + " retrain_full=True, sample=True, split_ratio=0.1, split_type='auto',\n", + " starting_points='static', task='classification', ...)