mirror of
				https://github.com/microsoft/autogen.git
				synced 2025-10-31 09:50:11 +00:00 
			
		
		
		
	Fix automl settings in scikit-learn pipeline integration example (#602)
* Added test directory and core file to gitignore. Closes #601. * Fixed pipeline fit parameters. Closes #600. * Reverted changes to gitignore.
This commit is contained in:
		
							parent
							
								
									c45741a67b
								
							
						
					
					
						commit
						fefdb48ef3
					
				| @ -93,14 +93,14 @@ | |||||||
|   }, |   }, | ||||||
|   { |   { | ||||||
|    "cell_type": "code", |    "cell_type": "code", | ||||||
|    "execution_count": 4, |    "execution_count": 1, | ||||||
|    "metadata": {}, |    "metadata": {}, | ||||||
|    "outputs": [ |    "outputs": [ | ||||||
|     { |     { | ||||||
|      "name": "stdout", |      "name": "stdout", | ||||||
|      "output_type": "stream", |      "output_type": "stream", | ||||||
|      "text": [ |      "text": [ | ||||||
|       "load dataset from ./openml_ds1169.pkl\n", |       "download dataset from openml\n", | ||||||
|       "Dataset name: airlines\n", |       "Dataset name: airlines\n", | ||||||
|       "X_train.shape: (404537, 7), y_train.shape: (404537,);\n", |       "X_train.shape: (404537, 7), y_train.shape: (404537,);\n", | ||||||
|       "X_test.shape: (134846, 7), y_test.shape: (134846,)\n" |       "X_test.shape: (134846, 7), y_test.shape: (134846,)\n" | ||||||
| @ -115,7 +115,7 @@ | |||||||
|   }, |   }, | ||||||
|   { |   { | ||||||
|    "cell_type": "code", |    "cell_type": "code", | ||||||
|    "execution_count": 5, |    "execution_count": 2, | ||||||
|    "metadata": {}, |    "metadata": {}, | ||||||
|    "outputs": [ |    "outputs": [ | ||||||
|     { |     { | ||||||
| @ -124,7 +124,7 @@ | |||||||
|        "array([  12., 2648.,    4.,   15.,    4.,  450.,   67.], dtype=float32)" |        "array([  12., 2648.,    4.,   15.,    4.,  450.,   67.], dtype=float32)" | ||||||
|       ] |       ] | ||||||
|      }, |      }, | ||||||
|      "execution_count": 5, |      "execution_count": 2, | ||||||
|      "metadata": {}, |      "metadata": {}, | ||||||
|      "output_type": "execute_result" |      "output_type": "execute_result" | ||||||
|     } |     } | ||||||
| @ -142,29 +142,74 @@ | |||||||
|   }, |   }, | ||||||
|   { |   { | ||||||
|    "cell_type": "code", |    "cell_type": "code", | ||||||
|    "execution_count": 6, |    "execution_count": 3, | ||||||
|    "metadata": {}, |    "metadata": {}, | ||||||
|    "outputs": [ |    "outputs": [ | ||||||
|     { |     { | ||||||
|      "data": { |      "data": { | ||||||
|       "text/html": [ |       "text/html": [ | ||||||
|        "<style>div.sk-top-container {color: black;background-color: white;}div.sk-toggleable {background-color: white;}label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.2em 0.3em;box-sizing: border-box;text-align: center;}div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}div.sk-estimator {font-family: monospace;background-color: #f0f8ff;margin: 0.25em 0.25em;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;}div.sk-estimator:hover {background-color: #d4ebff;}div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;}div.sk-item {z-index: 1;}div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}div.sk-parallel-item:only-child::after {width: 0;}div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0.2em;box-sizing: border-box;padding-bottom: 0.1em;background-color: white;position: relative;}div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}div.sk-label-container {position: relative;z-index: 2;text-align: center;}div.sk-container {display: inline-block;position: relative;}</style><div class=\"sk-top-container\"><div class=\"sk-container\"><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"b91d1bdf-ccb8-4fa5-a2d0-67a3538c0afc\" type=\"checkbox\" ><label class=\"sk-toggleable__label\" for=\"b91d1bdf-ccb8-4fa5-a2d0-67a3538c0afc\">Pipeline</label><div class=\"sk-toggleable__content\"><pre>Pipeline(steps=[('imputuer', SimpleImputer()),\n", |        "<style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-1\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>Pipeline(steps=[('imputuer', SimpleImputer()),\n", | ||||||
|        "                ('standardizer', StandardScaler()),\n", |        "                ('standardizer', StandardScaler()),\n", | ||||||
|        "                ('automl', <flaml.automl.AutoML object at 0x7f046d56fb50>)])</pre></div></div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"a8311733-9e55-4c0c-9c2a-6b9ba6227596\" type=\"checkbox\" ><label class=\"sk-toggleable__label\" for=\"a8311733-9e55-4c0c-9c2a-6b9ba6227596\">SimpleImputer</label><div class=\"sk-toggleable__content\"><pre>SimpleImputer()</pre></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"52580e54-89ab-4fb7-83a1-ae13962854bb\" type=\"checkbox\" ><label class=\"sk-toggleable__label\" for=\"52580e54-89ab-4fb7-83a1-ae13962854bb\">StandardScaler</label><div class=\"sk-toggleable__content\"><pre>StandardScaler()</pre></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"b9fe5397-bf24-491d-a938-c39a780e1ac0\" type=\"checkbox\" ><label class=\"sk-toggleable__label\" for=\"b9fe5397-bf24-491d-a938-c39a780e1ac0\">AutoML</label><div class=\"sk-toggleable__content\"><pre><flaml.automl.AutoML object at 0x7f046d56fb50></pre></div></div></div></div></div></div></div>" |        "                ('automl',\n", | ||||||
|  |        "                 AutoML(append_log=False, auto_augment=True, custom_hp={},\n", | ||||||
|  |        "                        early_stop=False, ensemble=False, estimator_list='auto',\n", | ||||||
|  |        "                        eval_method='auto', fit_kwargs_by_estimator={},\n", | ||||||
|  |        "                        hpo_method='auto', keep_search_state=False,\n", | ||||||
|  |        "                        learner_selector='sample', log_file_name='',\n", | ||||||
|  |        "                        log_training_metric=False, log_type='better',\n", | ||||||
|  |        "                        max_iter=None, mem_thres=4294967296, metric='auto',\n", | ||||||
|  |        "                        metric_constraints=[], min_sample_size=10000,\n", | ||||||
|  |        "                        model_history=False, n_concurrent_trials=1, n_jobs=-1,\n", | ||||||
|  |        "                        n_splits=5, pred_time_limit=inf, retrain_full=True,\n", | ||||||
|  |        "                        sample=True, split_ratio=0.1, split_type='auto',\n", | ||||||
|  |        "                        starting_points='static', task='classification', ...))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-1\" type=\"checkbox\" ><label for=\"sk-estimator-id-1\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">Pipeline</label><div class=\"sk-toggleable__content\"><pre>Pipeline(steps=[('imputuer', SimpleImputer()),\n", | ||||||
|  |        "                ('standardizer', StandardScaler()),\n", | ||||||
|  |        "                ('automl',\n", | ||||||
|  |        "                 AutoML(append_log=False, auto_augment=True, custom_hp={},\n", | ||||||
|  |        "                        early_stop=False, ensemble=False, estimator_list='auto',\n", | ||||||
|  |        "                        eval_method='auto', fit_kwargs_by_estimator={},\n", | ||||||
|  |        "                        hpo_method='auto', keep_search_state=False,\n", | ||||||
|  |        "                        learner_selector='sample', log_file_name='',\n", | ||||||
|  |        "                        log_training_metric=False, log_type='better',\n", | ||||||
|  |        "                        max_iter=None, mem_thres=4294967296, metric='auto',\n", | ||||||
|  |        "                        metric_constraints=[], min_sample_size=10000,\n", | ||||||
|  |        "                        model_history=False, n_concurrent_trials=1, n_jobs=-1,\n", | ||||||
|  |        "                        n_splits=5, pred_time_limit=inf, retrain_full=True,\n", | ||||||
|  |        "                        sample=True, split_ratio=0.1, split_type='auto',\n", | ||||||
|  |        "                        starting_points='static', task='classification', ...))])</pre></div></div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-2\" type=\"checkbox\" ><label for=\"sk-estimator-id-2\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">SimpleImputer</label><div class=\"sk-toggleable__content\"><pre>SimpleImputer()</pre></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-3\" type=\"checkbox\" ><label for=\"sk-estimator-id-3\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">StandardScaler</label><div class=\"sk-toggleable__content\"><pre>StandardScaler()</pre></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-4\" type=\"checkbox\" ><label for=\"sk-estimator-id-4\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">AutoML</label><div class=\"sk-toggleable__content\"><pre>AutoML(append_log=False, auto_augment=True, custom_hp={}, early_stop=False,\n", | ||||||
|  |        "       ensemble=False, estimator_list='auto', eval_method='auto',\n", | ||||||
|  |        "       fit_kwargs_by_estimator={}, hpo_method='auto', keep_search_state=False,\n", | ||||||
|  |        "       learner_selector='sample', log_file_name='', log_training_metric=False,\n", | ||||||
|  |        "       log_type='better', max_iter=None, mem_thres=4294967296, metric='auto',\n", | ||||||
|  |        "       metric_constraints=[], min_sample_size=10000, model_history=False,\n", | ||||||
|  |        "       n_concurrent_trials=1, n_jobs=-1, n_splits=5, pred_time_limit=inf,\n", | ||||||
|  |        "       retrain_full=True, sample=True, split_ratio=0.1, split_type='auto',\n", | ||||||
|  |        "       starting_points='static', task='classification', ...)</pre></div></div></div></div></div></div></div>" | ||||||
|       ], |       ], | ||||||
|       "text/plain": [ |       "text/plain": [ | ||||||
|        "Pipeline(steps=[('imputuer', SimpleImputer()),\n", |        "Pipeline(steps=[('imputuer', SimpleImputer()),\n", | ||||||
|        "                ('standardizer', StandardScaler()),\n", |        "                ('standardizer', StandardScaler()),\n", | ||||||
|        "                ('automl', <flaml.automl.AutoML object at 0x7f046d56fb50>)])" |        "                ('automl',\n", | ||||||
|  |        "                 AutoML(append_log=False, auto_augment=True, custom_hp={},\n", | ||||||
|  |        "                        early_stop=False, ensemble=False, estimator_list='auto',\n", | ||||||
|  |        "                        eval_method='auto', fit_kwargs_by_estimator={},\n", | ||||||
|  |        "                        hpo_method='auto', keep_search_state=False,\n", | ||||||
|  |        "                        learner_selector='sample', log_file_name='',\n", | ||||||
|  |        "                        log_training_metric=False, log_type='better',\n", | ||||||
|  |        "                        max_iter=None, mem_thres=4294967296, metric='auto',\n", | ||||||
|  |        "                        metric_constraints=[], min_sample_size=10000,\n", | ||||||
|  |        "                        model_history=False, n_concurrent_trials=1, n_jobs=-1,\n", | ||||||
|  |        "                        n_splits=5, pred_time_limit=inf, retrain_full=True,\n", | ||||||
|  |        "                        sample=True, split_ratio=0.1, split_type='auto',\n", | ||||||
|  |        "                        starting_points='static', task='classification', ...))])" | ||||||
|       ] |       ] | ||||||
|      }, |      }, | ||||||
|      "execution_count": 6, |      "execution_count": 3, | ||||||
|      "metadata": {}, |      "metadata": {}, | ||||||
|      "output_type": "execute_result" |      "output_type": "execute_result" | ||||||
|     } |     } | ||||||
|    ], |    ], | ||||||
|    "source": [ |    "source": [ | ||||||
|     "import sklearn\n", |  | ||||||
|     "from sklearn import set_config\n", |     "from sklearn import set_config\n", | ||||||
|     "from sklearn.pipeline import Pipeline\n", |     "from sklearn.pipeline import Pipeline\n", | ||||||
|     "from sklearn.impute import SimpleImputer\n", |     "from sklearn.impute import SimpleImputer\n", | ||||||
| @ -195,217 +240,177 @@ | |||||||
|   }, |   }, | ||||||
|   { |   { | ||||||
|    "cell_type": "code", |    "cell_type": "code", | ||||||
|    "execution_count": 7, |    "execution_count": 4, | ||||||
|    "metadata": {}, |    "metadata": {}, | ||||||
|    "outputs": [], |    "outputs": [], | ||||||
|    "source": [ |    "source": [ | ||||||
|     "settings = {\n", |     "automl_settings = {\n", | ||||||
|     "    \"time_budget\": 60,  # total running time in seconds\n", |     "    \"time_budget\": 60,  # total running time in seconds\n", | ||||||
|     "    \"metric\": 'accuracy',  # primary metrics can be chosen from: ['accuracy','roc_auc', 'roc_auc_ovr', 'roc_auc_ovo', 'f1','log_loss','mae','mse','r2']\n", |     "    \"metric\": 'accuracy',  # primary metrics can be chosen from: ['accuracy','roc_auc', 'roc_auc_ovr', 'roc_auc_ovo', 'f1','log_loss','mae','mse','r2']\n", | ||||||
|     "    \"task\": 'classification',  # task type   \n", |     "    \"task\": 'classification',  # task type   \n", | ||||||
|     "    \"estimator_list\":['xgboost','catboost','lgbm'],\n", |     "    \"estimator_list\": ['xgboost','catboost','lgbm'],\n", | ||||||
|     "    \"log_file_name\": 'airlines_experiment.log',  # flaml log file\n", |     "    \"log_file_name\": 'airlines_experiment.log',  # flaml log file\n", | ||||||
|     "}" |     "}\n", | ||||||
|  |     "pipeline_settings = {f\"automl__{key}\": value for key, value in automl_settings.items()}" | ||||||
|    ] |    ] | ||||||
|   }, |   }, | ||||||
|   { |   { | ||||||
|    "cell_type": "code", |    "cell_type": "code", | ||||||
|    "execution_count": 8, |    "execution_count": 5, | ||||||
|    "metadata": {}, |    "metadata": {}, | ||||||
|    "outputs": [ |    "outputs": [ | ||||||
|     { |     { | ||||||
|      "name": "stderr", |      "name": "stderr", | ||||||
|      "output_type": "stream", |      "output_type": "stream", | ||||||
|      "text": [ |      "text": [ | ||||||
|       "[flaml.automl: 08-22 21:32:13] {1130} INFO - Evaluation method: holdout\n", |       "[flaml.automl: 06-22 08:01:43] {2390} INFO - task = classification\n", | ||||||
|       "[flaml.automl: 08-22 21:32:14] {624} INFO - Using StratifiedKFold\n", |       "[flaml.automl: 06-22 08:01:43] {2392} INFO - Data split method: stratified\n", | ||||||
|       "[flaml.automl: 08-22 21:32:14] {1155} INFO - Minimizing error metric: 1-accuracy\n", |       "[flaml.automl: 06-22 08:01:43] {2396} INFO - Evaluation method: holdout\n", | ||||||
|       "[flaml.automl: 08-22 21:32:14] {1175} INFO - List of ML learners in AutoML Run: ['xgboost', 'catboost', 'lgbm']\n", |       "[flaml.automl: 06-22 08:01:44] {2465} INFO - Minimizing error metric: 1-accuracy\n", | ||||||
|       "[flaml.automl: 08-22 21:32:14] {1358} INFO - iteration 0, current learner xgboost\n", |       "[flaml.automl: 06-22 08:01:44] {2605} INFO - List of ML learners in AutoML Run: ['xgboost', 'catboost', 'lgbm']\n", | ||||||
|       "[flaml.automl: 08-22 21:32:14] {1515} INFO -  at 0.5s,\tbest xgboost's error=0.3755,\tbest xgboost's error=0.3755\n", |       "[flaml.automl: 06-22 08:01:44] {2897} INFO - iteration 0, current learner xgboost\n", | ||||||
|       "[flaml.automl: 08-22 21:32:14] {1358} INFO - iteration 1, current learner xgboost\n", |       "[flaml.automl: 06-22 08:01:44] {3025} INFO - Estimated sufficient time budget=105341s. Estimated necessary time budget=116s.\n", | ||||||
|       "[flaml.automl: 08-22 21:32:14] {1515} INFO -  at 0.6s,\tbest xgboost's error=0.3755,\tbest xgboost's error=0.3755\n", |       "[flaml.automl: 06-22 08:01:44] {3072} INFO -  at 0.7s,\testimator xgboost's best error=0.3755,\tbest estimator xgboost's best error=0.3755\n", | ||||||
|       "[flaml.automl: 08-22 21:32:14] {1358} INFO - iteration 2, current learner xgboost\n", |       "[flaml.automl: 06-22 08:01:44] {2897} INFO - iteration 1, current learner lgbm\n", | ||||||
|       "[flaml.automl: 08-22 21:32:14] {1515} INFO -  at 0.6s,\tbest xgboost's error=0.3755,\tbest xgboost's error=0.3755\n", |       "[flaml.automl: 06-22 08:01:44] {3072} INFO -  at 0.9s,\testimator lgbm's best error=0.3814,\tbest estimator xgboost's best error=0.3755\n", | ||||||
|       "[flaml.automl: 08-22 21:32:14] {1358} INFO - iteration 3, current learner xgboost\n", |       "[flaml.automl: 06-22 08:01:44] {2897} INFO - iteration 2, current learner xgboost\n", | ||||||
|       "[flaml.automl: 08-22 21:32:14] {1515} INFO -  at 0.7s,\tbest xgboost's error=0.3755,\tbest xgboost's error=0.3755\n", |       "[flaml.automl: 06-22 08:01:45] {3072} INFO -  at 1.3s,\testimator xgboost's best error=0.3755,\tbest estimator xgboost's best error=0.3755\n", | ||||||
|       "[flaml.automl: 08-22 21:32:14] {1358} INFO - iteration 4, current learner xgboost\n", |       "[flaml.automl: 06-22 08:01:45] {2897} INFO - iteration 3, current learner lgbm\n", | ||||||
|       "[flaml.automl: 08-22 21:32:14] {1515} INFO -  at 0.7s,\tbest xgboost's error=0.3679,\tbest xgboost's error=0.3679\n", |       "[flaml.automl: 06-22 08:01:45] {3072} INFO -  at 1.5s,\testimator lgbm's best error=0.3814,\tbest estimator xgboost's best error=0.3755\n", | ||||||
|       "[flaml.automl: 08-22 21:32:14] {1358} INFO - iteration 5, current learner lgbm\n", |       "[flaml.automl: 06-22 08:01:45] {2897} INFO - iteration 4, current learner xgboost\n", | ||||||
|       "[flaml.automl: 08-22 21:32:14] {1515} INFO -  at 0.8s,\tbest lgbm's error=0.3811,\tbest xgboost's error=0.3679\n", |       "[flaml.automl: 06-22 08:01:45] {3072} INFO -  at 1.8s,\testimator xgboost's best error=0.3755,\tbest estimator xgboost's best error=0.3755\n", | ||||||
|       "[flaml.automl: 08-22 21:32:14] {1358} INFO - iteration 6, current learner xgboost\n", |       "[flaml.automl: 06-22 08:01:45] {2897} INFO - iteration 5, current learner lgbm\n", | ||||||
|       "[flaml.automl: 08-22 21:32:14] {1515} INFO -  at 0.8s,\tbest xgboost's error=0.3679,\tbest xgboost's error=0.3679\n", |       "[flaml.automl: 06-22 08:01:45] {3072} INFO -  at 2.0s,\testimator lgbm's best error=0.3755,\tbest estimator xgboost's best error=0.3755\n", | ||||||
|       "[flaml.automl: 08-22 21:32:14] {1358} INFO - iteration 7, current learner xgboost\n", |       "[flaml.automl: 06-22 08:01:45] {2897} INFO - iteration 6, current learner xgboost\n", | ||||||
|       "[flaml.automl: 08-22 21:32:14] {1515} INFO -  at 0.9s,\tbest xgboost's error=0.3679,\tbest xgboost's error=0.3679\n", |       "[flaml.automl: 06-22 08:01:46] {3072} INFO -  at 2.3s,\testimator xgboost's best error=0.3724,\tbest estimator xgboost's best error=0.3724\n", | ||||||
|       "[flaml.automl: 08-22 21:32:14] {1358} INFO - iteration 8, current learner xgboost\n", |       "[flaml.automl: 06-22 08:01:46] {2897} INFO - iteration 7, current learner xgboost\n", | ||||||
|       "[flaml.automl: 08-22 21:32:14] {1515} INFO -  at 1.0s,\tbest xgboost's error=0.3679,\tbest xgboost's error=0.3679\n", |       "[flaml.automl: 06-22 08:01:46] {3072} INFO -  at 2.6s,\testimator xgboost's best error=0.3724,\tbest estimator xgboost's best error=0.3724\n", | ||||||
|       "[flaml.automl: 08-22 21:32:14] {1358} INFO - iteration 9, current learner lgbm\n", |       "[flaml.automl: 06-22 08:01:46] {2897} INFO - iteration 8, current learner xgboost\n", | ||||||
|       "[flaml.automl: 08-22 21:32:15] {1515} INFO -  at 1.1s,\tbest lgbm's error=0.3811,\tbest xgboost's error=0.3679\n", |       "[flaml.automl: 06-22 08:01:47] {3072} INFO -  at 3.1s,\testimator xgboost's best error=0.3657,\tbest estimator xgboost's best error=0.3657\n", | ||||||
|       "[flaml.automl: 08-22 21:32:15] {1358} INFO - iteration 10, current learner lgbm\n", |       "[flaml.automl: 06-22 08:01:47] {2897} INFO - iteration 9, current learner xgboost\n", | ||||||
|       "[flaml.automl: 08-22 21:32:15] {1515} INFO -  at 1.1s,\tbest lgbm's error=0.3755,\tbest xgboost's error=0.3679\n", |       "[flaml.automl: 06-22 08:01:47] {3072} INFO -  at 3.6s,\testimator xgboost's best error=0.3657,\tbest estimator xgboost's best error=0.3657\n", | ||||||
|       "[flaml.automl: 08-22 21:32:15] {1358} INFO - iteration 11, current learner xgboost\n", |       "[flaml.automl: 06-22 08:01:47] {2897} INFO - iteration 10, current learner xgboost\n", | ||||||
|       "[flaml.automl: 08-22 21:32:15] {1515} INFO -  at 1.2s,\tbest xgboost's error=0.3637,\tbest xgboost's error=0.3637\n", |       "[flaml.automl: 06-22 08:01:48] {3072} INFO -  at 4.8s,\testimator xgboost's best error=0.3592,\tbest estimator xgboost's best error=0.3592\n", | ||||||
|       "[flaml.automl: 08-22 21:32:15] {1358} INFO - iteration 12, current learner xgboost\n", |       "[flaml.automl: 06-22 08:01:48] {2897} INFO - iteration 11, current learner xgboost\n", | ||||||
|       "[flaml.automl: 08-22 21:32:15] {1515} INFO -  at 1.4s,\tbest xgboost's error=0.3594,\tbest xgboost's error=0.3594\n", |       "[flaml.automl: 06-22 08:01:50] {3072} INFO -  at 6.8s,\testimator xgboost's best error=0.3580,\tbest estimator xgboost's best error=0.3580\n", | ||||||
|       "[flaml.automl: 08-22 21:32:15] {1358} INFO - iteration 13, current learner xgboost\n", |       "[flaml.automl: 06-22 08:01:50] {2897} INFO - iteration 12, current learner xgboost\n", | ||||||
|       "[flaml.automl: 08-22 21:32:15] {1515} INFO -  at 1.5s,\tbest xgboost's error=0.3594,\tbest xgboost's error=0.3594\n", |       "[flaml.automl: 06-22 08:01:51] {3072} INFO -  at 8.1s,\testimator xgboost's best error=0.3580,\tbest estimator xgboost's best error=0.3580\n", | ||||||
|       "[flaml.automl: 08-22 21:32:15] {1358} INFO - iteration 14, current learner xgboost\n", |       "[flaml.automl: 06-22 08:01:51] {2897} INFO - iteration 13, current learner lgbm\n", | ||||||
|       "[flaml.automl: 08-22 21:32:15] {1515} INFO -  at 1.7s,\tbest xgboost's error=0.3591,\tbest xgboost's error=0.3591\n", |       "[flaml.automl: 06-22 08:01:52] {3072} INFO -  at 8.4s,\testimator lgbm's best error=0.3644,\tbest estimator xgboost's best error=0.3580\n", | ||||||
|       "[flaml.automl: 08-22 21:32:15] {1358} INFO - iteration 15, current learner lgbm\n", |       "[flaml.automl: 06-22 08:01:52] {2897} INFO - iteration 14, current learner lgbm\n", | ||||||
|       "[flaml.automl: 08-22 21:32:15] {1515} INFO -  at 1.7s,\tbest lgbm's error=0.3647,\tbest xgboost's error=0.3591\n", |       "[flaml.automl: 06-22 08:01:52] {3072} INFO -  at 8.7s,\testimator lgbm's best error=0.3644,\tbest estimator xgboost's best error=0.3580\n", | ||||||
|       "[flaml.automl: 08-22 21:32:15] {1358} INFO - iteration 16, current learner xgboost\n", |       "[flaml.automl: 06-22 08:01:52] {2897} INFO - iteration 15, current learner lgbm\n", | ||||||
|       "[flaml.automl: 08-22 21:32:15] {1515} INFO -  at 2.0s,\tbest xgboost's error=0.3585,\tbest xgboost's error=0.3585\n", |       "[flaml.automl: 06-22 08:01:53] {3072} INFO -  at 9.3s,\testimator lgbm's best error=0.3644,\tbest estimator xgboost's best error=0.3580\n", | ||||||
|       "[flaml.automl: 08-22 21:32:15] {1358} INFO - iteration 17, current learner lgbm\n", |       "[flaml.automl: 06-22 08:01:53] {2897} INFO - iteration 16, current learner xgboost\n", | ||||||
|       "[flaml.automl: 08-22 21:32:16] {1515} INFO -  at 2.0s,\tbest lgbm's error=0.3647,\tbest xgboost's error=0.3585\n", |       "[flaml.automl: 06-22 08:01:56] {3072} INFO -  at 12.1s,\testimator xgboost's best error=0.3559,\tbest estimator xgboost's best error=0.3559\n", | ||||||
|       "[flaml.automl: 08-22 21:32:16] {1358} INFO - iteration 18, current learner lgbm\n", |       "[flaml.automl: 06-22 08:01:56] {2897} INFO - iteration 17, current learner lgbm\n", | ||||||
|       "[flaml.automl: 08-22 21:32:16] {1515} INFO -  at 2.1s,\tbest lgbm's error=0.3629,\tbest xgboost's error=0.3585\n", |       "[flaml.automl: 06-22 08:01:56] {3072} INFO -  at 12.6s,\testimator lgbm's best error=0.3604,\tbest estimator xgboost's best error=0.3559\n", | ||||||
|       "[flaml.automl: 08-22 21:32:16] {1358} INFO - iteration 19, current learner xgboost\n", |       "[flaml.automl: 06-22 08:01:56] {2897} INFO - iteration 18, current learner catboost\n", | ||||||
|       "[flaml.automl: 08-22 21:32:16] {1515} INFO -  at 2.3s,\tbest xgboost's error=0.3553,\tbest xgboost's error=0.3553\n", |       "[flaml.automl: 06-22 08:01:56] {3072} INFO -  at 13.0s,\testimator catboost's best error=0.3615,\tbest estimator xgboost's best error=0.3559\n", | ||||||
|       "[flaml.automl: 08-22 21:32:16] {1358} INFO - iteration 20, current learner xgboost\n", |       "[flaml.automl: 06-22 08:01:56] {2897} INFO - iteration 19, current learner catboost\n", | ||||||
|       "[flaml.automl: 08-22 21:32:16] {1515} INFO -  at 2.6s,\tbest xgboost's error=0.3553,\tbest xgboost's error=0.3553\n", |       "[flaml.automl: 06-22 08:01:57] {3072} INFO -  at 13.7s,\testimator catboost's best error=0.3615,\tbest estimator xgboost's best error=0.3559\n", | ||||||
|       "[flaml.automl: 08-22 21:32:16] {1358} INFO - iteration 21, current learner xgboost\n", |       "[flaml.automl: 06-22 08:01:57] {2897} INFO - iteration 20, current learner catboost\n", | ||||||
|       "[flaml.automl: 08-22 21:32:16] {1515} INFO -  at 2.7s,\tbest xgboost's error=0.3553,\tbest xgboost's error=0.3553\n", |       "[flaml.automl: 06-22 08:01:57] {3072} INFO -  at 13.9s,\testimator catboost's best error=0.3615,\tbest estimator xgboost's best error=0.3559\n", | ||||||
|       "[flaml.automl: 08-22 21:32:16] {1358} INFO - iteration 22, current learner lgbm\n", |       "[flaml.automl: 06-22 08:01:57] {2897} INFO - iteration 21, current learner xgboost\n", | ||||||
|       "[flaml.automl: 08-22 21:32:16] {1515} INFO -  at 2.8s,\tbest lgbm's error=0.3629,\tbest xgboost's error=0.3553\n", |       "[flaml.automl: 06-22 08:01:59] {3072} INFO -  at 15.7s,\testimator xgboost's best error=0.3559,\tbest estimator xgboost's best error=0.3559\n", | ||||||
|       "[flaml.automl: 08-22 21:32:16] {1358} INFO - iteration 23, current learner lgbm\n", |       "[flaml.automl: 06-22 08:01:59] {2897} INFO - iteration 22, current learner catboost\n", | ||||||
|       "[flaml.automl: 08-22 21:32:16] {1515} INFO -  at 2.9s,\tbest lgbm's error=0.3629,\tbest xgboost's error=0.3553\n", |       "[flaml.automl: 06-22 08:02:00] {3072} INFO -  at 16.5s,\testimator catboost's best error=0.3489,\tbest estimator catboost's best error=0.3489\n", | ||||||
|       "[flaml.automl: 08-22 21:32:16] {1358} INFO - iteration 24, current learner xgboost\n", |       "[flaml.automl: 06-22 08:02:00] {2897} INFO - iteration 23, current learner catboost\n", | ||||||
|       "[flaml.automl: 08-22 21:32:17] {1515} INFO -  at 3.1s,\tbest xgboost's error=0.3520,\tbest xgboost's error=0.3520\n", |       "[flaml.automl: 06-22 08:02:02] {3072} INFO -  at 18.9s,\testimator catboost's best error=0.3489,\tbest estimator catboost's best error=0.3489\n", | ||||||
|       "[flaml.automl: 08-22 21:32:17] {1358} INFO - iteration 25, current learner xgboost\n", |       "[flaml.automl: 06-22 08:02:02] {2897} INFO - iteration 24, current learner lgbm\n", | ||||||
|       "[flaml.automl: 08-22 21:32:17] {1515} INFO -  at 3.3s,\tbest xgboost's error=0.3520,\tbest xgboost's error=0.3520\n", |       "[flaml.automl: 06-22 08:02:03] {3072} INFO -  at 19.2s,\testimator lgbm's best error=0.3604,\tbest estimator catboost's best error=0.3489\n", | ||||||
|       "[flaml.automl: 08-22 21:32:17] {1358} INFO - iteration 26, current learner lgbm\n", |       "[flaml.automl: 06-22 08:02:03] {2897} INFO - iteration 25, current learner catboost\n", | ||||||
|       "[flaml.automl: 08-22 21:32:17] {1515} INFO -  at 3.4s,\tbest lgbm's error=0.3573,\tbest xgboost's error=0.3520\n", |       "[flaml.automl: 06-22 08:02:03] {3072} INFO -  at 20.0s,\testimator catboost's best error=0.3472,\tbest estimator catboost's best error=0.3472\n", | ||||||
|       "[flaml.automl: 08-22 21:32:17] {1358} INFO - iteration 27, current learner lgbm\n", |       "[flaml.automl: 06-22 08:02:03] {2897} INFO - iteration 26, current learner catboost\n", | ||||||
|       "[flaml.automl: 08-22 21:32:17] {1515} INFO -  at 3.5s,\tbest lgbm's error=0.3573,\tbest xgboost's error=0.3520\n", |       "[flaml.automl: 06-22 08:02:06] {3072} INFO -  at 22.2s,\testimator catboost's best error=0.3472,\tbest estimator catboost's best error=0.3472\n", | ||||||
|       "[flaml.automl: 08-22 21:32:17] {1358} INFO - iteration 28, current learner xgboost\n", |       "[flaml.automl: 06-22 08:02:06] {2897} INFO - iteration 27, current learner lgbm\n", | ||||||
|       "[flaml.automl: 08-22 21:32:17] {1515} INFO -  at 3.9s,\tbest xgboost's error=0.3520,\tbest xgboost's error=0.3520\n", |       "[flaml.automl: 06-22 08:02:06] {3072} INFO -  at 22.6s,\testimator lgbm's best error=0.3604,\tbest estimator catboost's best error=0.3472\n", | ||||||
|       "[flaml.automl: 08-22 21:32:17] {1358} INFO - iteration 29, current learner xgboost\n", |       "[flaml.automl: 06-22 08:02:06] {2897} INFO - iteration 28, current learner lgbm\n", | ||||||
|       "[flaml.automl: 08-22 21:32:18] {1515} INFO -  at 4.1s,\tbest xgboost's error=0.3520,\tbest xgboost's error=0.3520\n", |       "[flaml.automl: 06-22 08:02:06] {3072} INFO -  at 22.9s,\testimator lgbm's best error=0.3604,\tbest estimator catboost's best error=0.3472\n", | ||||||
|       "[flaml.automl: 08-22 21:32:18] {1358} INFO - iteration 30, current learner xgboost\n", |       "[flaml.automl: 06-22 08:02:06] {2897} INFO - iteration 29, current learner catboost\n", | ||||||
|       "[flaml.automl: 08-22 21:32:18] {1515} INFO -  at 4.8s,\tbest xgboost's error=0.3485,\tbest xgboost's error=0.3485\n", |       "[flaml.automl: 06-22 08:02:07] {3072} INFO -  at 23.6s,\testimator catboost's best error=0.3472,\tbest estimator catboost's best error=0.3472\n", | ||||||
|       "[flaml.automl: 08-22 21:32:18] {1358} INFO - iteration 31, current learner lgbm\n", |       "[flaml.automl: 06-22 08:02:07] {2897} INFO - iteration 30, current learner xgboost\n", | ||||||
|       "[flaml.automl: 08-22 21:32:19] {1515} INFO -  at 5.2s,\tbest lgbm's error=0.3573,\tbest xgboost's error=0.3485\n", |       "[flaml.automl: 06-22 08:02:09] {3072} INFO -  at 25.4s,\testimator xgboost's best error=0.3548,\tbest estimator catboost's best error=0.3472\n", | ||||||
|       "[flaml.automl: 08-22 21:32:19] {1358} INFO - iteration 32, current learner xgboost\n", |       "[flaml.automl: 06-22 08:02:09] {2897} INFO - iteration 31, current learner catboost\n", | ||||||
|       "[flaml.automl: 08-22 21:32:19] {1515} INFO -  at 5.7s,\tbest xgboost's error=0.3485,\tbest xgboost's error=0.3485\n", |       "[flaml.automl: 06-22 08:02:16] {3072} INFO -  at 32.3s,\testimator catboost's best error=0.3388,\tbest estimator catboost's best error=0.3388\n", | ||||||
|       "[flaml.automl: 08-22 21:32:19] {1358} INFO - iteration 33, current learner xgboost\n", |       "[flaml.automl: 06-22 08:02:16] {2897} INFO - iteration 32, current learner lgbm\n", | ||||||
|       "[flaml.automl: 08-22 21:32:20] {1515} INFO -  at 6.6s,\tbest xgboost's error=0.3485,\tbest xgboost's error=0.3485\n", |       "[flaml.automl: 06-22 08:02:16] {3072} INFO -  at 32.7s,\testimator lgbm's best error=0.3604,\tbest estimator catboost's best error=0.3388\n", | ||||||
|       "[flaml.automl: 08-22 21:32:20] {1358} INFO - iteration 34, current learner lgbm\n", |       "[flaml.automl: 06-22 08:02:16] {2897} INFO - iteration 33, current learner catboost\n", | ||||||
|       "[flaml.automl: 08-22 21:32:20] {1515} INFO -  at 6.9s,\tbest lgbm's error=0.3481,\tbest lgbm's error=0.3481\n", |       "[flaml.automl: 06-22 08:02:22] {3072} INFO -  at 38.5s,\testimator catboost's best error=0.3388,\tbest estimator catboost's best error=0.3388\n", | ||||||
|       "[flaml.automl: 08-22 21:32:20] {1358} INFO - iteration 35, current learner lgbm\n", |       "[flaml.automl: 06-22 08:02:22] {2897} INFO - iteration 34, current learner catboost\n", | ||||||
|       "[flaml.automl: 08-22 21:32:21] {1515} INFO -  at 7.2s,\tbest lgbm's error=0.3481,\tbest lgbm's error=0.3481\n", |       "[flaml.automl: 06-22 08:02:43] {3072} INFO -  at 59.6s,\testimator catboost's best error=0.3388,\tbest estimator catboost's best error=0.3388\n", | ||||||
|       "[flaml.automl: 08-22 21:32:21] {1358} INFO - iteration 36, current learner lgbm\n", |       "[flaml.automl: 06-22 08:02:46] {3336} INFO - retrain catboost for 2.8s\n", | ||||||
|       "[flaml.automl: 08-22 21:32:21] {1515} INFO -  at 7.4s,\tbest lgbm's error=0.3481,\tbest lgbm's error=0.3481\n", |       "[flaml.automl: 06-22 08:02:46] {3343} INFO - retrained model: <catboost.core.CatBoostClassifier object at 0x7fbeeb3859d0>\n", | ||||||
|       "[flaml.automl: 08-22 21:32:21] {1358} INFO - iteration 37, current learner xgboost\n", |       "[flaml.automl: 06-22 08:02:46] {2636} INFO - fit succeeded\n", | ||||||
|       "[flaml.automl: 08-22 21:32:22] {1515} INFO -  at 8.2s,\tbest xgboost's error=0.3485,\tbest lgbm's error=0.3481\n", |       "[flaml.automl: 06-22 08:02:46] {2637} INFO - Time taken to find the best model: 32.311296463012695\n" | ||||||
|       "[flaml.automl: 08-22 21:32:22] {1358} INFO - iteration 38, current learner lgbm\n", |  | ||||||
|       "[flaml.automl: 08-22 21:32:22] {1515} INFO -  at 8.5s,\tbest lgbm's error=0.3481,\tbest lgbm's error=0.3481\n", |  | ||||||
|       "[flaml.automl: 08-22 21:32:22] {1358} INFO - iteration 39, current learner lgbm\n", |  | ||||||
|       "[flaml.automl: 08-22 21:32:22] {1515} INFO -  at 8.8s,\tbest lgbm's error=0.3481,\tbest lgbm's error=0.3481\n", |  | ||||||
|       "[flaml.automl: 08-22 21:32:22] {1358} INFO - iteration 40, current learner xgboost\n", |  | ||||||
|       "[flaml.automl: 08-22 21:32:23] {1515} INFO -  at 9.7s,\tbest xgboost's error=0.3485,\tbest lgbm's error=0.3481\n", |  | ||||||
|       "[flaml.automl: 08-22 21:32:23] {1358} INFO - iteration 41, current learner lgbm\n", |  | ||||||
|       "[flaml.automl: 08-22 21:32:25] {1515} INFO -  at 11.7s,\tbest lgbm's error=0.3481,\tbest lgbm's error=0.3481\n", |  | ||||||
|       "[flaml.automl: 08-22 21:32:25] {1358} INFO - iteration 42, current learner catboost\n", |  | ||||||
|       "[flaml.automl: 08-22 21:32:26] {1515} INFO -  at 12.2s,\tbest catboost's error=0.3647,\tbest lgbm's error=0.3481\n", |  | ||||||
|       "[flaml.automl: 08-22 21:32:26] {1358} INFO - iteration 43, current learner lgbm\n", |  | ||||||
|       "[flaml.automl: 08-22 21:32:28] {1515} INFO -  at 14.4s,\tbest lgbm's error=0.3427,\tbest lgbm's error=0.3427\n", |  | ||||||
|       "[flaml.automl: 08-22 21:32:28] {1358} INFO - iteration 44, current learner catboost\n", |  | ||||||
|       "[flaml.automl: 08-22 21:32:28] {1515} INFO -  at 14.6s,\tbest catboost's error=0.3647,\tbest lgbm's error=0.3427\n", |  | ||||||
|       "[flaml.automl: 08-22 21:32:28] {1358} INFO - iteration 45, current learner catboost\n", |  | ||||||
|       "[flaml.automl: 08-22 21:32:28] {1515} INFO -  at 14.8s,\tbest catboost's error=0.3601,\tbest lgbm's error=0.3427\n", |  | ||||||
|       "[flaml.automl: 08-22 21:32:28] {1358} INFO - iteration 46, current learner lgbm\n", |  | ||||||
|       "[flaml.automl: 08-22 21:32:30] {1515} INFO -  at 16.9s,\tbest lgbm's error=0.3427,\tbest lgbm's error=0.3427\n", |  | ||||||
|       "[flaml.automl: 08-22 21:32:30] {1358} INFO - iteration 47, current learner xgboost\n", |  | ||||||
|       "[flaml.automl: 08-22 21:32:34] {1515} INFO -  at 21.0s,\tbest xgboost's error=0.3332,\tbest xgboost's error=0.3332\n", |  | ||||||
|       "[flaml.automl: 08-22 21:32:34] {1358} INFO - iteration 48, current learner catboost\n", |  | ||||||
|       "[flaml.automl: 08-22 21:32:35] {1515} INFO -  at 21.1s,\tbest catboost's error=0.3601,\tbest xgboost's error=0.3332\n", |  | ||||||
|       "[flaml.automl: 08-22 21:32:35] {1358} INFO - iteration 49, current learner lgbm\n", |  | ||||||
|       "[flaml.automl: 08-22 21:32:37] {1515} INFO -  at 23.2s,\tbest lgbm's error=0.3409,\tbest xgboost's error=0.3332\n", |  | ||||||
|       "[flaml.automl: 08-22 21:32:37] {1358} INFO - iteration 50, current learner xgboost\n", |  | ||||||
|       "[flaml.automl: 08-22 21:32:38] {1515} INFO -  at 24.6s,\tbest xgboost's error=0.3332,\tbest xgboost's error=0.3332\n", |  | ||||||
|       "[flaml.automl: 08-22 21:32:38] {1358} INFO - iteration 51, current learner xgboost\n", |  | ||||||
|       "[flaml.automl: 08-22 21:32:53] {1515} INFO -  at 40.0s,\tbest xgboost's error=0.3279,\tbest xgboost's error=0.3279\n", |  | ||||||
|       "[flaml.automl: 08-22 21:32:53] {1358} INFO - iteration 52, current learner xgboost\n", |  | ||||||
|       "[flaml.automl: 08-22 21:33:01] {1515} INFO -  at 47.6s,\tbest xgboost's error=0.3279,\tbest xgboost's error=0.3279\n", |  | ||||||
|       "[flaml.automl: 08-22 21:33:01] {1358} INFO - iteration 53, current learner catboost\n", |  | ||||||
|       "[flaml.automl: 08-22 21:33:01] {1515} INFO -  at 47.7s,\tbest catboost's error=0.3601,\tbest xgboost's error=0.3279\n", |  | ||||||
|       "[flaml.automl: 08-22 21:33:01] {1358} INFO - iteration 54, current learner catboost\n", |  | ||||||
|       "[flaml.automl: 08-22 21:33:02] {1515} INFO -  at 48.2s,\tbest catboost's error=0.3601,\tbest xgboost's error=0.3279\n", |  | ||||||
|       "[flaml.automl: 08-22 21:33:02] {1358} INFO - iteration 55, current learner catboost\n", |  | ||||||
|       "[flaml.automl: 08-22 21:33:02] {1515} INFO -  at 48.5s,\tbest catboost's error=0.3552,\tbest xgboost's error=0.3279\n", |  | ||||||
|       "[flaml.automl: 08-22 21:33:02] {1358} INFO - iteration 56, current learner catboost\n", |  | ||||||
|       "[flaml.automl: 08-22 21:33:02] {1515} INFO -  at 48.7s,\tbest catboost's error=0.3552,\tbest xgboost's error=0.3279\n", |  | ||||||
|       "[flaml.automl: 08-22 21:33:02] {1358} INFO - iteration 57, current learner catboost\n", |  | ||||||
|       "[flaml.automl: 08-22 21:33:02] {1515} INFO -  at 49.0s,\tbest catboost's error=0.3552,\tbest xgboost's error=0.3279\n", |  | ||||||
|       "[flaml.automl: 08-22 21:33:02] {1358} INFO - iteration 58, current learner catboost\n", |  | ||||||
|       "[flaml.automl: 08-22 21:33:03] {1515} INFO -  at 49.1s,\tbest catboost's error=0.3552,\tbest xgboost's error=0.3279\n", |  | ||||||
|       "[flaml.automl: 08-22 21:33:03] {1358} INFO - iteration 59, current learner catboost\n", |  | ||||||
|       "[flaml.automl: 08-22 21:33:03] {1515} INFO -  at 49.4s,\tbest catboost's error=0.3552,\tbest xgboost's error=0.3279\n", |  | ||||||
|       "[flaml.automl: 08-22 21:33:03] {1358} INFO - iteration 60, current learner catboost\n", |  | ||||||
|       "[flaml.automl: 08-22 21:33:06] {1515} INFO -  at 52.2s,\tbest catboost's error=0.3453,\tbest xgboost's error=0.3279\n", |  | ||||||
|       "[flaml.automl: 08-22 21:33:06] {1358} INFO - iteration 61, current learner catboost\n", |  | ||||||
|       "[flaml.automl: 08-22 21:33:07] {1515} INFO -  at 53.9s,\tbest catboost's error=0.3453,\tbest xgboost's error=0.3279\n", |  | ||||||
|       "[flaml.automl: 08-22 21:33:07] {1358} INFO - iteration 62, current learner catboost\n", |  | ||||||
|       "[flaml.automl: 08-22 21:33:09] {1515} INFO -  at 55.3s,\tbest catboost's error=0.3453,\tbest xgboost's error=0.3279\n", |  | ||||||
|       "[flaml.automl: 08-22 21:33:09] {1358} INFO - iteration 63, current learner catboost\n", |  | ||||||
|       "[flaml.automl: 08-22 21:33:10] {1515} INFO -  at 56.4s,\tbest catboost's error=0.3453,\tbest xgboost's error=0.3279\n", |  | ||||||
|       "[flaml.automl: 08-22 21:33:10] {1358} INFO - iteration 64, current learner catboost\n", |  | ||||||
|       "[flaml.automl: 08-22 21:33:11] {1515} INFO -  at 57.5s,\tbest catboost's error=0.3453,\tbest xgboost's error=0.3279\n", |  | ||||||
|       "[flaml.automl: 08-22 21:33:11] {1358} INFO - iteration 65, current learner lgbm\n", |  | ||||||
|       "[flaml.automl: 08-22 21:33:13] {1515} INFO -  at 59.8s,\tbest lgbm's error=0.3409,\tbest xgboost's error=0.3279\n", |  | ||||||
|       "[flaml.automl: 08-22 21:33:13] {1592} INFO - selected model: XGBClassifier(base_score=0.5, booster='gbtree',\n", |  | ||||||
|       "              colsample_bylevel=0.810466508891351, colsample_bynode=1,\n", |  | ||||||
|       "              colsample_bytree=0.8005378817953572, gamma=0, gpu_id=-1,\n", |  | ||||||
|       "              grow_policy='lossguide', importance_type='gain',\n", |  | ||||||
|       "              interaction_constraints='', learning_rate=0.06234183309508761,\n", |  | ||||||
|       "              max_delta_step=0, max_depth=0, max_leaves=1797,\n", |  | ||||||
|       "              min_child_weight=0.07275175679381725, missing=nan,\n", |  | ||||||
|       "              monotone_constraints='()', n_estimators=63, n_jobs=-1,\n", |  | ||||||
|       "              num_parallel_tree=1, random_state=0, reg_alpha=0.5768305704485758,\n", |  | ||||||
|       "              reg_lambda=6.867180836557797, scale_pos_weight=1,\n", |  | ||||||
|       "              subsample=0.9814772488195874, tree_method='hist',\n", |  | ||||||
|       "              use_label_encoder=False, validate_parameters=1, verbosity=0)\n", |  | ||||||
|       "[flaml.automl: 08-22 21:33:26] {1633} INFO - retrain xgboost for 13.0s\n", |  | ||||||
|       "[flaml.automl: 08-22 21:33:26] {1636} INFO - retrained model: XGBClassifier(base_score=0.5, booster='gbtree',\n", |  | ||||||
|       "              colsample_bylevel=0.810466508891351, colsample_bynode=1,\n", |  | ||||||
|       "              colsample_bytree=0.8005378817953572, gamma=0, gpu_id=-1,\n", |  | ||||||
|       "              grow_policy='lossguide', importance_type='gain',\n", |  | ||||||
|       "              interaction_constraints='', learning_rate=0.06234183309508761,\n", |  | ||||||
|       "              max_delta_step=0, max_depth=0, max_leaves=1797,\n", |  | ||||||
|       "              min_child_weight=0.07275175679381725, missing=nan,\n", |  | ||||||
|       "              monotone_constraints='()', n_estimators=63, n_jobs=-1,\n", |  | ||||||
|       "              num_parallel_tree=1, random_state=0, reg_alpha=0.5768305704485758,\n", |  | ||||||
|       "              reg_lambda=6.867180836557797, scale_pos_weight=1,\n", |  | ||||||
|       "              subsample=0.9814772488195874, tree_method='hist',\n", |  | ||||||
|       "              use_label_encoder=False, validate_parameters=1, verbosity=0)\n", |  | ||||||
|       "[flaml.automl: 08-22 21:33:26] {1199} INFO - fit succeeded\n", |  | ||||||
|       "[flaml.automl: 08-22 21:33:26] {1200} INFO - Time taken to find the best model: 40.023393869400024\n" |  | ||||||
|      ] |      ] | ||||||
|     }, |     }, | ||||||
|     { |     { | ||||||
|      "data": { |      "data": { | ||||||
|       "text/html": [ |       "text/html": [ | ||||||
|        "<style>div.sk-top-container {color: black;background-color: white;}div.sk-toggleable {background-color: white;}label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.2em 0.3em;box-sizing: border-box;text-align: center;}div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}div.sk-estimator {font-family: monospace;background-color: #f0f8ff;margin: 0.25em 0.25em;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;}div.sk-estimator:hover {background-color: #d4ebff;}div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;}div.sk-item {z-index: 1;}div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}div.sk-parallel-item:only-child::after {width: 0;}div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0.2em;box-sizing: border-box;padding-bottom: 0.1em;background-color: white;position: relative;}div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}div.sk-label-container {position: relative;z-index: 2;text-align: center;}div.sk-container {display: inline-block;position: relative;}</style><div class=\"sk-top-container\"><div class=\"sk-container\"><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"b994edf1-5e76-4cd3-b719-4a204af673dc\" type=\"checkbox\" ><label class=\"sk-toggleable__label\" for=\"b994edf1-5e76-4cd3-b719-4a204af673dc\">Pipeline</label><div class=\"sk-toggleable__content\"><pre>Pipeline(steps=[('imputuer', SimpleImputer()),\n", |        "<style>#sk-container-id-2 {color: black;background-color: white;}#sk-container-id-2 pre{padding: 0;}#sk-container-id-2 div.sk-toggleable {background-color: white;}#sk-container-id-2 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-2 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-2 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-2 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-2 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-2 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-2 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-2 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-2 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-2 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-2 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-2 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-2 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-2 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-2 div.sk-item {position: relative;z-index: 1;}#sk-container-id-2 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-2 div.sk-item::before, #sk-container-id-2 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-2 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-2 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-2 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-2 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-2 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-2 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-2 div.sk-label-container {text-align: center;}#sk-container-id-2 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-2 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-2\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>Pipeline(steps=[('imputuer', SimpleImputer()),\n", | ||||||
|        "                ('standardizer', StandardScaler()),\n", |        "                ('standardizer', StandardScaler()),\n", | ||||||
|        "                ('automl', <flaml.automl.AutoML object at 0x7f046d56fb50>)])</pre></div></div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"c94ee64a-d8b1-4cbb-aeca-952bf6963c13\" type=\"checkbox\" ><label class=\"sk-toggleable__label\" for=\"c94ee64a-d8b1-4cbb-aeca-952bf6963c13\">SimpleImputer</label><div class=\"sk-toggleable__content\"><pre>SimpleImputer()</pre></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"6a28d11a-19e2-4243-8b85-e3ba5f6f2a7e\" type=\"checkbox\" ><label class=\"sk-toggleable__label\" for=\"6a28d11a-19e2-4243-8b85-e3ba5f6f2a7e\">StandardScaler</label><div class=\"sk-toggleable__content\"><pre>StandardScaler()</pre></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"03dcbe59-a8be-4f09-a944-115d90939f81\" type=\"checkbox\" ><label class=\"sk-toggleable__label\" for=\"03dcbe59-a8be-4f09-a944-115d90939f81\">AutoML</label><div class=\"sk-toggleable__content\"><pre><flaml.automl.AutoML object at 0x7f046d56fb50></pre></div></div></div></div></div></div></div>" |        "                ('automl',\n", | ||||||
|  |        "                 AutoML(append_log=False, auto_augment=True, custom_hp={},\n", | ||||||
|  |        "                        early_stop=False, ensemble=False, estimator_list='auto',\n", | ||||||
|  |        "                        eval_method='auto', fit_kwargs_by_estimator={},\n", | ||||||
|  |        "                        hpo_method='auto', keep_search_state=False,\n", | ||||||
|  |        "                        learner_selector='sample', log_file_name='',\n", | ||||||
|  |        "                        log_training_metric=False, log_type='better',\n", | ||||||
|  |        "                        max_iter=None, mem_thres=4294967296, metric='auto',\n", | ||||||
|  |        "                        metric_constraints=[], min_sample_size=10000,\n", | ||||||
|  |        "                        model_history=False, n_concurrent_trials=1, n_jobs=-1,\n", | ||||||
|  |        "                        n_splits=5, pred_time_limit=inf, retrain_full=True,\n", | ||||||
|  |        "                        sample=True, split_ratio=0.1, split_type='auto',\n", | ||||||
|  |        "                        starting_points='static', task='classification', ...))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-5\" type=\"checkbox\" ><label for=\"sk-estimator-id-5\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">Pipeline</label><div class=\"sk-toggleable__content\"><pre>Pipeline(steps=[('imputuer', SimpleImputer()),\n", | ||||||
|  |        "                ('standardizer', StandardScaler()),\n", | ||||||
|  |        "                ('automl',\n", | ||||||
|  |        "                 AutoML(append_log=False, auto_augment=True, custom_hp={},\n", | ||||||
|  |        "                        early_stop=False, ensemble=False, estimator_list='auto',\n", | ||||||
|  |        "                        eval_method='auto', fit_kwargs_by_estimator={},\n", | ||||||
|  |        "                        hpo_method='auto', keep_search_state=False,\n", | ||||||
|  |        "                        learner_selector='sample', log_file_name='',\n", | ||||||
|  |        "                        log_training_metric=False, log_type='better',\n", | ||||||
|  |        "                        max_iter=None, mem_thres=4294967296, metric='auto',\n", | ||||||
|  |        "                        metric_constraints=[], min_sample_size=10000,\n", | ||||||
|  |        "                        model_history=False, n_concurrent_trials=1, n_jobs=-1,\n", | ||||||
|  |        "                        n_splits=5, pred_time_limit=inf, retrain_full=True,\n", | ||||||
|  |        "                        sample=True, split_ratio=0.1, split_type='auto',\n", | ||||||
|  |        "                        starting_points='static', task='classification', ...))])</pre></div></div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-6\" type=\"checkbox\" ><label for=\"sk-estimator-id-6\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">SimpleImputer</label><div class=\"sk-toggleable__content\"><pre>SimpleImputer()</pre></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-7\" type=\"checkbox\" ><label for=\"sk-estimator-id-7\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">StandardScaler</label><div class=\"sk-toggleable__content\"><pre>StandardScaler()</pre></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-8\" type=\"checkbox\" ><label for=\"sk-estimator-id-8\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">AutoML</label><div class=\"sk-toggleable__content\"><pre>AutoML(append_log=False, auto_augment=True, custom_hp={}, early_stop=False,\n", | ||||||
|  |        "       ensemble=False, estimator_list='auto', eval_method='auto',\n", | ||||||
|  |        "       fit_kwargs_by_estimator={}, hpo_method='auto', keep_search_state=False,\n", | ||||||
|  |        "       learner_selector='sample', log_file_name='', log_training_metric=False,\n", | ||||||
|  |        "       log_type='better', max_iter=None, mem_thres=4294967296, metric='auto',\n", | ||||||
|  |        "       metric_constraints=[], min_sample_size=10000, model_history=False,\n", | ||||||
|  |        "       n_concurrent_trials=1, n_jobs=-1, n_splits=5, pred_time_limit=inf,\n", | ||||||
|  |        "       retrain_full=True, sample=True, split_ratio=0.1, split_type='auto',\n", | ||||||
|  |        "       starting_points='static', task='classification', ...)</pre></div></div></div></div></div></div></div>" | ||||||
|       ], |       ], | ||||||
|       "text/plain": [ |       "text/plain": [ | ||||||
|        "Pipeline(steps=[('imputuer', SimpleImputer()),\n", |        "Pipeline(steps=[('imputuer', SimpleImputer()),\n", | ||||||
|        "                ('standardizer', StandardScaler()),\n", |        "                ('standardizer', StandardScaler()),\n", | ||||||
|        "                ('automl', <flaml.automl.AutoML object at 0x7f046d56fb50>)])" |        "                ('automl',\n", | ||||||
|  |        "                 AutoML(append_log=False, auto_augment=True, custom_hp={},\n", | ||||||
|  |        "                        early_stop=False, ensemble=False, estimator_list='auto',\n", | ||||||
|  |        "                        eval_method='auto', fit_kwargs_by_estimator={},\n", | ||||||
|  |        "                        hpo_method='auto', keep_search_state=False,\n", | ||||||
|  |        "                        learner_selector='sample', log_file_name='',\n", | ||||||
|  |        "                        log_training_metric=False, log_type='better',\n", | ||||||
|  |        "                        max_iter=None, mem_thres=4294967296, metric='auto',\n", | ||||||
|  |        "                        metric_constraints=[], min_sample_size=10000,\n", | ||||||
|  |        "                        model_history=False, n_concurrent_trials=1, n_jobs=-1,\n", | ||||||
|  |        "                        n_splits=5, pred_time_limit=inf, retrain_full=True,\n", | ||||||
|  |        "                        sample=True, split_ratio=0.1, split_type='auto',\n", | ||||||
|  |        "                        starting_points='static', task='classification', ...))])" | ||||||
|       ] |       ] | ||||||
|      }, |      }, | ||||||
|      "execution_count": 8, |      "execution_count": 5, | ||||||
|      "metadata": {}, |      "metadata": {}, | ||||||
|      "output_type": "execute_result" |      "output_type": "execute_result" | ||||||
|     } |     } | ||||||
|    ], |    ], | ||||||
|    "source": [ |    "source": [ | ||||||
|     "automl_pipeline.fit(X_train, y_train, \n", |     "automl_pipeline.fit(X_train, y_train, **pipeline_settings)" | ||||||
|     "                        automl__time_budget=settings['time_budget'],\n", |  | ||||||
|     "                        automl__metric=settings['metric'],\n", |  | ||||||
|     "                        automl__estimator_list=settings['estimator_list'],\n", |  | ||||||
|     "                        automl__log_training_metric=True)" |  | ||||||
|    ] |    ] | ||||||
|   }, |   }, | ||||||
|   { |   { | ||||||
| @ -500,11 +505,9 @@ | |||||||
|   } |   } | ||||||
|  ], |  ], | ||||||
|  "metadata": { |  "metadata": { | ||||||
|   "interpreter": { |  | ||||||
|    "hash": "0cfea3304185a9579d09e0953576b57c8581e46e6ebc6dfeb681bc5a511f7544" |  | ||||||
|   }, |  | ||||||
|   "kernelspec": { |   "kernelspec": { | ||||||
|    "display_name": "Python 3.8.0 64-bit ('blend': conda)", |    "display_name": "Python 3.9.12 64-bit", | ||||||
|  |    "language": "python", | ||||||
|    "name": "python3" |    "name": "python3" | ||||||
|   }, |   }, | ||||||
|   "language_info": { |   "language_info": { | ||||||
| @ -517,7 +520,12 @@ | |||||||
|    "name": "python", |    "name": "python", | ||||||
|    "nbconvert_exporter": "python", |    "nbconvert_exporter": "python", | ||||||
|    "pygments_lexer": "ipython3", |    "pygments_lexer": "ipython3", | ||||||
|    "version": "3.8.0" |    "version": "3.9.12" | ||||||
|  |   }, | ||||||
|  |   "vscode": { | ||||||
|  |    "interpreter": { | ||||||
|  |     "hash": "949777d72b0d2535278d3dc13498b2535136f6dfe0678499012e853ee9abcab1" | ||||||
|  |    } | ||||||
|   } |   } | ||||||
|  }, |  }, | ||||||
|  "nbformat": 4, |  "nbformat": 4, | ||||||
|  | |||||||
| @ -37,16 +37,17 @@ automl_pipeline | |||||||
| ### Run AutoML in the pipeline | ### Run AutoML in the pipeline | ||||||
| 
 | 
 | ||||||
| ```python | ```python | ||||||
| settings = { | automl_settings = { | ||||||
|     "time_budget": 60,  # total running time in seconds |     "time_budget": 60,  # total running time in seconds | ||||||
|     "metric": 'accuracy',  # primary metrics can be chosen from: ['accuracy','roc_auc', 'roc_auc_ovr', 'roc_auc_ovo', 'f1','log_loss','mae','mse','r2'] |     "metric": "accuracy",  # primary metrics can be chosen from: ['accuracy','roc_auc', 'roc_auc_ovr', 'roc_auc_ovo', 'f1','log_loss','mae','mse','r2'] | ||||||
|     "task": 'classification',  # task type   |     "task": "classification",  # task type | ||||||
|     "estimator_list":['xgboost','catboost','lgbm'], |     "estimator_list": ["xgboost", "catboost", "lgbm"], | ||||||
|     "log_file_name": 'airlines_experiment.log',  # flaml log file |     "log_file_name": "airlines_experiment.log",  # flaml log file | ||||||
| } | } | ||||||
| automl_pipeline.fit(X_train, y_train, | pipeline_settings = { | ||||||
|                     automl__time_budget=60, |     f"automl__{key}": value for key, value in automl_settings.items() | ||||||
|                     automl__metric="accuracy") | } | ||||||
|  | automl_pipeline.fit(X_train, y_train, **pipeline_settings) | ||||||
| ``` | ``` | ||||||
| 
 | 
 | ||||||
| ### Get the automl object from the pipeline | ### Get the automl object from the pipeline | ||||||
|  | |||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user
	 Zvi Baratz
						Zvi Baratz