<!-- Thank you for your contribution! Please review
https://microsoft.github.io/autogen/docs/Contribute before opening a
pull request. -->
<!-- Please add a reviewer to the assignee section when you create a PR.
If you don't have the access to it, we will shortly find a reviewer and
assign them to your PR. -->
## Why are these changes needed?
These changes are needed to expand AutoGen's memory capabilities with a
robust, production-ready integration with Mem0.ai.
<!-- Please give a short summary of the change and the problem this
solves. -->
This PR adds a new memory component for AutoGen that integrates with
Mem0.ai, providing a robust memory solution that supports both cloud and
local backends. The Mem0Memory class enables agents to store and
retrieve information persistently across conversation sessions.
## Key Features
- Seamless integration with Mem0.ai memory system
- Support for both cloud-based and local storage backends
- Robust error handling with detailed logging
- Full implementation of AutoGen's Memory interface
- Context updating for enhanced agent conversations
- Configurable search parameters for memory retrieval
## Related issue number
<!-- For example: "Closes #1234" -->
## Checks
- [x] I've included any doc changes needed for
<https://microsoft.github.io/autogen/>. See
<https://github.com/microsoft/autogen/blob/main/CONTRIBUTING.md> to
build and test documentation locally.
- [x] I've added tests (if relevant) corresponding to the changes
introduced in this PR.
- [ ] I've made sure all auto checks have passed.
---------
Co-authored-by: Victor Dibia <victordibia@microsoft.com>
Co-authored-by: Eric Zhu <ekzhu@users.noreply.github.com>
Co-authored-by: Ricky Loynd <riloynd@microsoft.com>
## Why are these changes needed?
This PR adds support for configurable embedding functions in
ChromaDBVectorMemory, addressing the need for users to customize how
embeddings are generated for vector similarity search. Currently,
ChromaDB memory is limited to default embedding functions, which
restricts flexibility for different use cases that may require specific
embedding models or custom embedding logic.
The implementation allows users to:
- Use different SentenceTransformer models for domain-specific
embeddings
- Integrate with OpenAI's embedding API for consistent embedding
generation
- Define custom embedding functions for specialized requirements
- Maintain backward compatibility with existing default behavior
## Related issue number
Closes#6267
## Checks
- [x] I've included any doc changes needed for
<https://microsoft.github.io/autogen/>. See
<https://github.com/microsoft/autogen/blob/main/CONTRIBUTING.md> to
build and test documentation locally.
- [x] I've added tests corresponding to the changes introduced in this
PR.
- [x] I've made sure all auto checks have passed.
---------
Co-authored-by: Victor Dibia <victordibia@microsoft.com>
Co-authored-by: Victor Dibia <victor.dibia@gmail.com>
<!-- Thank you for your contribution! Please review
https://microsoft.github.io/autogen/docs/Contribute before opening a
pull request. -->
<!-- Please add a reviewer to the assignee section when you create a PR.
If you don't have the access to it, we will shortly find a reviewer and
assign them to your PR. -->
## Why are these changes needed?
This is an initial exploration of what could be a solution for #6214 .
It implements a simple text canvas using difflib and also a memory
component and a tool component for interacting with the canvas. Still in
early testing but would love feedback on the design.
## Related issue number
<!-- For example: "Closes #1234" -->
## Checks
- [ ] I've included any doc changes needed for
<https://microsoft.github.io/autogen/>. See
<https://github.com/microsoft/autogen/blob/main/CONTRIBUTING.md> to
build and test documentation locally.
- [ ] I've added tests (if relevant) corresponding to the changes
introduced in this PR.
- [ ] I've made sure all auto checks have passed.
---------
Co-authored-by: Leonardo Pinheiro <lpinheiro@microsoft.com>
Co-authored-by: Eric Zhu <ekzhu@users.noreply.github.com>
<!-- Thank you for your contribution! Please review
https://microsoft.github.io/autogen/docs/Contribute before opening a
pull request. -->
<!-- Please add a reviewer to the assignee section when you create a PR.
If you don't have the access to it, we will shortly find a reviewer and
assign them to your PR. -->
## Why are these changes needed?
<!-- Please give a short summary of the change and the problem this
solves. -->
Shows an example of how to use the `Memory` interface to implement a
just-in-time vector memory based on chromadb.
```python
import os
from pathlib import Path
from autogen_agentchat.agents import AssistantAgent
from autogen_agentchat.ui import Console
from autogen_core.memory import MemoryContent, MemoryMimeType
from autogen_ext.memory.chromadb import ChromaDBVectorMemory, PersistentChromaDBVectorMemoryConfig
from autogen_ext.models.openai import OpenAIChatCompletionClient
# Initialize ChromaDB memory with custom config
chroma_user_memory = ChromaDBVectorMemory(
config=PersistentChromaDBVectorMemoryConfig(
collection_name="preferences",
persistence_path=os.path.join(str(Path.home()), ".chromadb_autogen"),
k=2, # Return top k results
score_threshold=0.4, # Minimum similarity score
)
)
# a HttpChromaDBVectorMemoryConfig is also supported for connecting to a remote ChromaDB server
# Add user preferences to memory
await chroma_user_memory.add(
MemoryContent(
content="The weather should be in metric units",
mime_type=MemoryMimeType.TEXT,
metadata={"category": "preferences", "type": "units"},
)
)
await chroma_user_memory.add(
MemoryContent(
content="Meal recipe must be vegan",
mime_type=MemoryMimeType.TEXT,
metadata={"category": "preferences", "type": "dietary"},
)
)
# Create assistant agent with ChromaDB memory
assistant_agent = AssistantAgent(
name="assistant_agent",
model_client=OpenAIChatCompletionClient(
model="gpt-4o",
),
tools=[get_weather],
memory=[user_memory],
)
stream = assistant_agent.run_stream(task="What is the weather in New York?")
await Console(stream)
await user_memory.close()
```
```txt
---------- user ----------
What is the weather in New York?
---------- assistant_agent ----------
[MemoryContent(content='The weather should be in metric units', mime_type='MemoryMimeType.TEXT', metadata={'category': 'preferences', 'mime_type': 'MemoryMimeType.TEXT', 'type': 'units', 'score': 0.4342913043162201, 'id': '8a8d683c-5866-41e1-ac17-08c4fda6da86'}), MemoryContent(content='The weather should be in metric units', mime_type='MemoryMimeType.TEXT', metadata={'category': 'preferences', 'mime_type': 'MemoryMimeType.TEXT', 'type': 'units', 'score': 0.4342913043162201, 'id': 'f27af42c-cb63-46f0-b26b-ffcc09955ca1'})]
---------- assistant_agent ----------
[FunctionCall(id='call_a8U3YEj2dxA065vyzdfXDtNf', arguments='{"city":"New York","units":"metric"}', name='get_weather')]
---------- assistant_agent ----------
[FunctionExecutionResult(content='The weather in New York is 23 °C and Sunny.', call_id='call_a8U3YEj2dxA065vyzdfXDtNf', is_error=False)]
---------- assistant_agent ----------
The weather in New York is 23 °C and Sunny.
```
Note that MemoryContent object in the MemoryQuery events have useful
metadata like the score and id retrieved memories.
## Related issue number
<!-- For example: "Closes #1234" -->
## Checks
- [ ] I've included any doc changes needed for
https://microsoft.github.io/autogen/. See
https://microsoft.github.io/autogen/docs/Contribute#documentation to
build and test documentation locally.
- [ ] I've added tests (if relevant) corresponding to the changes
introduced in this PR.
- [ ] I've made sure all auto checks have passed.