* support latest xgboost version
* Update test_classification.py
* Update
Exists problems when installing xgb1.6.1 in py3.6
* cleanup
* xgboost version
* remove time_budget_s in test
* remove redundancy
* stop support of python 3.6
Co-authored-by: zsk <shaokunzhang529@gmail.com>
Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu>
* init value type match
* bump version to 1.0.6
* add a note about flaml version in notebook
* add note about mismatched ITER_HP
* catch SSLError when accessing OpenML data
* catch errors in autovw test
Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu>
* refactoring TransformersEstimator to support default and custom_hp
* handling starting_points not in search space
* addressing starting point more than max_iter
* fixing upper < lower bug
* update model.py
- change upper bound for "lags" hyperparameter
* update test_forecast.py
- add a test for a large dataset
* update sample.py
- pre-commit changes
* changed signature of automl.predict and automl.predict_proba to X
* XGBoostEstimator
* changed signature of Prophet predict to X
* changed signature of ARIMA predict to X
* changed signature of TS_SKLearn_Regressor predict to X
* add sklearn regressors as learners for ts_forecast task
* add direct forecasting strategy
warnings and errors for duplicate rows and missing values
- add preprocess for sklearn time series forecast
update automl.py
update test/test_forecast.py
* update model.py and test_forecast.py for cv eval_method
* add "hcrystalball" dependency in setup.py
* update automl.py
- add _validate_ts_data function for abstraction
- include xgb_limitdepth as a learner
* update model.py
- update search space for sklearn ts regressors
* update automl.py and test_forecast.py for numpy array inputs
* add documentations to model.py
* add documentation for removing catboost regressor
* update automl.py
- _validate_ts_data() function
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* query logged runs
* mlflow log when using ray
* key check for newer version of ray #363
* catch importerror
* log and load AutoML model
* retrain if necessary when ensemble fails
* fix checkpoint naming + trial id for non-ray mode, fix the bug in running test mode, delete all the checkpoints in non-ray mode
* finished testing for checkpoint naming, delete checkpoint, ray, max iter = 1
* adding predict_proba, address PR 293's comments
close#293#291
if save_best_model_per_estimator is False and retrain_final is True, unfit the model after evaluation in HPO.
retrain if using ray.
update ITER_HP in config after a trial is finished.
change prophet logging level.
example and notebook update.
allow settings to be passed to AutoML constructor. Are you planning to add multi-output-regression capability to FLAML #192 Is multi-tasking allowed? #277 can pass the auotml setting to the constructor instead of requiring a derived class.
remove model_history.
checkpoint bug fix.
* model_history meaning save_best_model_per_estimator
* ITER_HP
* example update
* prophet logging level
* comment update in forecast notebook
* print format improvement
* allow settings to be passed to AutoML constructor
* checkpoint bug fix
* time limit for autohf regression test
* skip slow test on macos
* cleanup before del