This PR adds callable as an option to specify conditional edges in
GraphFlow.
```python
import asyncio
from autogen_agentchat.agents import AssistantAgent
from autogen_agentchat.conditions import MaxMessageTermination
from autogen_agentchat.teams import DiGraphBuilder, GraphFlow
from autogen_ext.models.openai import OpenAIChatCompletionClient
async def main():
# Initialize agents with OpenAI model clients.
model_client = OpenAIChatCompletionClient(model="gpt-4.1-nano")
agent_a = AssistantAgent(
"A",
model_client=model_client,
system_message="Detect if the input is in Chinese. If it is, say 'yes', else say 'no', and nothing else.",
)
agent_b = AssistantAgent("B", model_client=model_client, system_message="Translate input to English.")
agent_c = AssistantAgent("C", model_client=model_client, system_message="Translate input to Chinese.")
# Create a directed graph with conditional branching flow A -> B ("yes"), A -> C (otherwise).
builder = DiGraphBuilder()
builder.add_node(agent_a).add_node(agent_b).add_node(agent_c)
# Create conditions as callables that check the message content.
builder.add_edge(agent_a, agent_b, condition=lambda msg: "yes" in msg.to_model_text())
builder.add_edge(agent_a, agent_c, condition=lambda msg: "yes" not in msg.to_model_text())
graph = builder.build()
# Create a GraphFlow team with the directed graph.
team = GraphFlow(
participants=[agent_a, agent_b, agent_c],
graph=graph,
termination_condition=MaxMessageTermination(5),
)
# Run the team and print the events.
async for event in team.run_stream(task="AutoGen is a framework for building AI agents."):
print(event)
asyncio.run(main())
```
---------
Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: ekzhu <320302+ekzhu@users.noreply.github.com>
Support concurrent execution in `GraphFlow`:
- Updated `BaseGroupChatManager.select_speaker` to return a union of a
single string or a list of speaker name strings and added logics to
check for currently activated speakers and only proceed to select next
speakers when all activated speakers have finished.
- Updated existing teams (e.g., `SelectorGroupChat`) with the new
signature, while still returning a single speaker in their
implementations.
- Updated `GraphFlow` to support multiple speakers selected.
- Refactored `GraphFlow` for less dictionary gymnastic by using a queue
and update using `update_message_thread`.
Example: a fan out graph:
```python
import asyncio
from autogen_agentchat.agents import AssistantAgent
from autogen_agentchat.teams import DiGraphBuilder, GraphFlow
from autogen_ext.models.openai import OpenAIChatCompletionClient
async def main():
# Initialize agents with OpenAI model clients.
model_client = OpenAIChatCompletionClient(model="gpt-4.1-nano")
agent_a = AssistantAgent("A", model_client=model_client, system_message="You are a helpful assistant.")
agent_b = AssistantAgent("B", model_client=model_client, system_message="Translate input to Chinese.")
agent_c = AssistantAgent("C", model_client=model_client, system_message="Translate input to Japanese.")
# Create a directed graph with fan-out flow A -> (B, C).
builder = DiGraphBuilder()
builder.add_node(agent_a).add_node(agent_b).add_node(agent_c)
builder.add_edge(agent_a, agent_b).add_edge(agent_a, agent_c)
graph = builder.build()
# Create a GraphFlow team with the directed graph.
team = GraphFlow(
participants=[agent_a, agent_b, agent_c],
graph=graph,
)
# Run the team and print the events.
async for event in team.run_stream(task="Write a short story about a cat."):
print(event)
asyncio.run(main())
```
Resolves:
#6541#6533
## Why are these changes needed?
This PR enhances the `SelectorGroupChat` class by introducing a new
`model_context` parameter to support more context-aware speaker
selection.
### Changes
- Added a `model_context: ChatCompletionContext | None` parameter to
`SelectorGroupChat`.
- Defaulted to `UnboundedChatCompletionContext` when None is provided
like `AssistantAgent`.
- Updated `_select_speaker` to prepend context messages from
`model_context` to the main thread history.
- Refactored history construction into a helper method
`construct_message_history`.
## Related issue number
Closes [Issue #6301](https://github.com/org/repo/issues/6301), enabling
the group chat manager to utilize `model_context` for richer, more
informed speaker selection decisions.
## Checks
- [x] I've included any doc changes needed for
<https://microsoft.github.io/autogen/>. See
<https://github.com/microsoft/autogen/blob/main/CONTRIBUTING.md> to
build and test documentation locally.
- [x] I've added tests (if relevant) corresponding to the changes
introduced in this PR.
- [x] I've made sure all auto checks have passed.
---------
Signed-off-by: Abhijeetsingh Meena <abhijeet040403@gmail.com>
Co-authored-by: Eric Zhu <ekzhu@users.noreply.github.com>
## Why are these changes needed?
❗ Before
Previously, GraphFlow.__init__() modified the inner_chats and
termination_condition for internal execution logic (e.g., constructing
_StopAgent or composing OrTerminationCondition).
However, these modified values were also used during dump_component(),
meaning the serialized config no longer matched the original inputs.
As a result:
1. dump_component() → load_component() → dump_component() produced
non-idempotent configs.
2. Internal-only constructs like _StopAgent were mistakenly serialized,
even though they should only exist in runtime.
⸻
✅ After
This patch changes the behavior to:
• Store original inner_chats and termination_condition as-is at
initialization.
• During to_config(), serialize only the original unmodified versions.
• Avoid serializing _StopAgent or other dynamically built agents.
• Ensure deserialization (from_config) produces a logically equivalent
object without additional nesting or duplication.
This ensures that:
• GraphFlow.dump_component() → load_component() round-trip produces
consistent, minimal configs.
• Internal execution logic and serialized component structure are
properly separated.
<!-- Please give a short summary of the change and the problem this
solves. -->
## Related issue number
<!-- For example: "Closes #1234" -->
Closes#6431
## Checks
- [ ] I've included any doc changes needed for
<https://microsoft.github.io/autogen/>. See
<https://github.com/microsoft/autogen/blob/main/CONTRIBUTING.md> to
build and test documentation locally.
- [x] I've added tests (if relevant) corresponding to the changes
introduced in this PR.
- [x] I've made sure all auto checks have passed.
Closes#4623
### Add Directed Graph-based Group Chat Execution Engine
(`DiGraphGroupChat`)
This PR introduces a new graph-based execution framework for Autogen
agent teams, located under `autogen_agentchat/teams/_group_chat/_graph`.
**Key Features:**
- **`DiGraphGroupChat`**: A new group chat implementation that executes
agents based on a user-defined directed graph (DAG or cyclic with exit
conditions).
- **`AGGraphBuilder`**: A fluent builder API to programmatically
construct graphs.
- **`MessageFilterAgent`**: A wrapper to restrict what messages an agent
sees before invocation, supporting per-source and per-position
filtering.
**Capabilities:**
- Supports sequential, parallel, conditional, and cyclic workflows.
- Enables fine-grained control over both execution order and message
context.
- Compatible with existing Autogen agents and runtime interfaces.
**Tests:**
- Located in `autogen_agentchat/tests/test_group_chat_graph.py`
- Includes unit and integration tests covering:
- Graph validation
- Execution paths
- Conditional routing
- Loops with exit conditions
- Message filtering
Let me know if anything needs refactoring or if you'd like the
components split further.
---------
Co-authored-by: Eric Zhu <ekzhu@users.noreply.github.com>
Co-authored-by: Leonardo Pinheiro <leosantospinheiro@gmail.com>
This change avoid re-registering a structured message already registered
to the team by a previous agent also included in the team.
This issue occurs when agents share Pydantic models as output format
## Related issue number
Closes#6353
---------
Co-authored-by: Eric Zhu <ekzhu@users.noreply.github.com>
## Why are these changes needed?
This PR updates `SelectorGroupChat` to support streaming mode for
`select_speaker`.
It introduces a `streaming` argument — when set to `True`,
`select_speaker` will use `create_streaming()` instead of `create()`.
## Additional context
Some models (e.g., QwQ) only work properly in streaming mode.
To support them, the prompt selection step in `SelectorGroupChat` must
also run with `streaming=True`.
## Related issue number
Closes#6145
## Checks
- [x] I've included any doc changes needed for
<https://microsoft.github.io/autogen/>. See
<https://github.com/microsoft/autogen/blob/main/CONTRIBUTING.md> to
build and test documentation locally.
- [x] I've added tests (if relevant) corresponding to the changes
introduced in this PR.
- [x] I've made sure all auto checks have passed.
---------
Co-authored-by: Eric Zhu <ekzhu@users.noreply.github.com>
Add an option emit_team_events to BaseGroupChat to emit events from
group chat manager through run_stream.
SpeakerSelectedEvent from group chat speaker selection.
Closes#6161
Co-authored-by: Eric Zhu <ekzhu@users.noreply.github.com>
Added support for structured message component using the Json to
Pydantic utility functions. Note: also adding the ability to use a
format string for structured messages.
Co-authored-by: Eric Zhu <ekzhu@users.noreply.github.com>
Resolves#5851
* Added GroupChatError event type and terminate a run when an error
occurs in either a participant or the group chat manager
* Raise a RuntimeError from the error message within the group chat run
Rename the `ChatMessage` and `AgentEvent` base classes to `BaseChatMessage` and `BaseAgentEvent`.
Bring back the `ChatMessage` and `AgentEvent` as union of built-in concrete types to avoid breaking existing applications that depends on Pydantic serialization.
Why?
Many existing code uses containers like this:
```python
class AppMessage(BaseModel):
name: str
message: ChatMessage
# Serialization is this:
m = AppMessage(...)
m.model_dump_json()
# Fields like HandoffMessage.target will be lost because it is now treated as a base class without content or target fields.
```
The assumption on `ChatMessage` or `AgentEvent` to be a union of concrete types could be in many existing code bases. So this PR brings back the union types, while keep method type hints such as those on `on_messages` to use the `BaseChatMessage` and `BaseAgentEvent` base classes for flexibility.
This PR refactored `AgentEvent` and `ChatMessage` union types to
abstract base classes. This allows for user-defined message types that
subclass one of the base classes to be used in AgentChat.
To support a unified interface for working with the messages, the base
classes added abstract methods for:
- Convert content to string
- Convert content to a `UserMessage` for model client
- Convert content for rendering in console.
- Dump into a dictionary
- Load and create a new instance from a dictionary
This way, all agents such as `AssistantAgent` and `SocietyOfMindAgent`
can utilize the unified interface to work with any built-in and
user-defined message type.
This PR also introduces a new message type, `StructuredMessage` for
AgentChat (Resolves#5131), which is a generic type that requires a
user-specified content type.
You can create a `StructuredMessage` as follow:
```python
class MessageType(BaseModel):
data: str
references: List[str]
message = StructuredMessage[MessageType](content=MessageType(data="data", references=["a", "b"]), source="user")
# message.content is of type `MessageType`.
```
This PR addresses the receving side of this message type. To produce
this message type from `AssistantAgent`, the work continue in #5934.
Added unit tests to verify this message type works with agents and
teams.
## Summary of Changes
- Added 'candidate_func' to 'SelectorGroupChat' to narrow-down the pool
of candidate speakers.
- Introduced a test in tests/test_group_chat_endpoint.py to validate its
functionality.
- Updated the selector group chat user guide with an example
demonstrating 'candidate_func'.
## Why are these changes needed?
- These changes adds a new parameter `candidate_func` to
`SelectorGroupChat` that helps user narrow-down the set of agents for
speaker selection, allowing users to automatically select next speaker
from a smaller pool of agents.
## Related issue number
Closes#5828
## Checks
- [x] I've included any doc changes needed for
<https://microsoft.github.io/autogen/>. See
<https://github.com/microsoft/autogen/blob/main/CONTRIBUTING.md> to
build and test documentation locally.
- [x] I've added tests (if relevant) corresponding to the changes
introduced in this PR.
- [x] I've made sure all auto checks have passed.
---------
Signed-off-by: Abhijeetsingh Meena <abhijeet040403@gmail.com>
Co-authored-by: Eric Zhu <ekzhu@users.noreply.github.com>
1. Add `on_pause` and `on_resume` API to `ChatAgent` to support pausing
behavior when running `on_message` concurrently.
2. Add `GroupChatPause` and `GroupChatResume` RPC events and handle them
in `ChatAgentContainer`.
3. Add `pause` and `resume` API to `BaseGroupChat` to allow for this
behavior accessible from the public API.
4. Improve `SequentialRoutedAgent` class to customize which message
types are sequentially handled, making it possible to have concurrent
handling for some messages (e.g., `GroupChatPause`).
5. Added unit tests.
See `test_group_chat_pause_resume.py` for how to use this feature.
What is the difference between pause/resume vs. termination and restart?
- Pause and resume issue direct RPC calls to the participanting agents
of a team while they are running, allowing putting the on-going
generation or actions on hold. This is useful when an agent's turn takes
a long time and multiple steps to complete, and user/application wants
to re-evaluate whether it is worth continue the step or cancel. This
also allows user/application to pause individual agents and resuming
them independently from the team API.
- Termination and restart requires the whole team to comes to a
full-stop, and termination conditions are checked in between agents'
turns. So termination can only happen when no agent is working on its
turn. It is possible that a termination condition has reached well
before the team is terminated, if the agent is taking a long time to
generate a response.
Resolves: #5881
Modify `BaseGroupChat.save_state` to not require the team to be stopped
first. The `save_state` method is read-only. While it may retrieve an
inconsistent state when the team is running, we made a notice to it's
API doc.
Resolves: #5880
Resolves#4075
1. Introduce custom runtime parameter for all AgentChat teams
(RoundRobinGroupChat, SelectorGroupChat, etc.). This is done by making
sure each team's topics are isolated from other teams, and decoupling
state from agent identities. Also, I removed the closure agent from the
BaseGroupChat and use the group chat manager agent to relay messages to
the output message queue.
2. Added unit tests to test scenarios with custom runtimes by using
pytest fixture
3. Refactored existing unit tests to use ReplayChatCompletionClient with
a few improvements to the client.
4. Fix a one-liner bug in AssistantAgent that caused deserialized agent
to have handoffs.
How to use it?
```python
import asyncio
from autogen_core import SingleThreadedAgentRuntime
from autogen_agentchat.agents import AssistantAgent
from autogen_agentchat.teams import RoundRobinGroupChat
from autogen_agentchat.conditions import TextMentionTermination
from autogen_ext.models.replay import ReplayChatCompletionClient
async def main() -> None:
# Create a runtime
runtime = SingleThreadedAgentRuntime()
runtime.start()
# Create a model client.
model_client = ReplayChatCompletionClient(
["1", "2", "3", "4", "5", "6", "7", "8", "9", "10"],
)
# Create agents
agent1 = AssistantAgent("assistant1", model_client=model_client, system_message="You are a helpful assistant.")
agent2 = AssistantAgent("assistant2", model_client=model_client, system_message="You are a helpful assistant.")
# Create a termination condition
termination_condition = TextMentionTermination("10", sources=["assistant1", "assistant2"])
# Create a team
team = RoundRobinGroupChat([agent1, agent2], runtime=runtime, termination_condition=termination_condition)
# Run the team
stream = team.run_stream(task="Count to 10.")
async for message in stream:
print(message)
# Save the state.
state = await team.save_state()
# Load the state to an existing team.
await team.load_state(state)
# Run the team again
model_client.reset()
stream = team.run_stream(task="Count to 10.")
async for message in stream:
print(message)
# Create a new team, with the same agent names.
agent3 = AssistantAgent("assistant1", model_client=model_client, system_message="You are a helpful assistant.")
agent4 = AssistantAgent("assistant2", model_client=model_client, system_message="You are a helpful assistant.")
new_team = RoundRobinGroupChat([agent3, agent4], runtime=runtime, termination_condition=termination_condition)
# Load the state to the new team.
await new_team.load_state(state)
# Run the new team
model_client.reset()
new_stream = new_team.run_stream(task="Count to 10.")
async for message in new_stream:
print(message)
# Stop the runtime
await runtime.stop()
asyncio.run(main())
```
TODOs as future PRs:
1. Documentation.
2. How to handle errors in custom runtime when the agent has exception?
---------
Co-authored-by: Ryan Sweet <rysweet@microsoft.com>
Closes#4904
Does not change default behavior in core.
In agentchat, this change will mean that exceptions that used to be
ignored and result in bugs like the group chat stopping are now reported
out to the user application.
---------
Co-authored-by: Ben Constable <benconstable@microsoft.com>
Co-authored-by: Ryan Sweet <rysweet@microsoft.com>
Don't throw an exception when model makes a mistake. Use retries, and if
not succeeding after a fixed attempts, fall back to the previous sepaker
if available, or the first participant.
Resolves#5453
Get's SelectorGroupChat working for llama by:
1. Using a UserMessage rather than a SystemMessage
2. Normalizing how roles are presented (one agent per line)
3. Normalizing how the transcript is constructed (a blank line between
every message)
Some agent descriptions were split over multiple lines in the M1
orchestrator. This PR ensures that each description appears on one, and
only one, line. This makes it easier for smaller models to understand.
Resolves#3983
* introduce `model_client_stream` parameter in `AssistantAgent` to
enable token-level streaming output.
* introduce `ModelClientStreamingChunkEvent` as a type of `AgentEvent`
to pass the streaming chunks to the application via `run_stream` and
`on_messages_stream`. Although this will not affect the inner messages
list in the final `Response` or `TaskResult`.
* handle this new message type in `Console`.
* initial pass on making group chats declarative
* update group chat tests
* update impl to include participant serialization for all teams
* v1 making soc declarative
* update memory test
* update chatagent and team base classes
* update serialization doc notebook
* fomating updates
Update _magentic_one_orchestrator.py
In a Magentic Group Settting, if one of the Assitant Agents uses a tool it gives the following error, note this is under a FALSE reflect_on_tool variable.
Making it true, wont happen, though more tokens will be consumed and it will have a worst output and the philosophy of a tool as an answer is not followed...
* Enhance MagenticOneGroupChat documentation with architecture overview and citation reference
* Fix formatting in MagenticOneGroupChat documentation and add citation reference
* feat: add support for list of messages as team task input
* Update society of mind agent to use the list input task
---------
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: Ryan Sweet <rysweet@microsoft.com>
Co-authored-by: Eric Zhu <ekzhu@users.noreply.github.com>