This PR refactored `AgentEvent` and `ChatMessage` union types to
abstract base classes. This allows for user-defined message types that
subclass one of the base classes to be used in AgentChat.
To support a unified interface for working with the messages, the base
classes added abstract methods for:
- Convert content to string
- Convert content to a `UserMessage` for model client
- Convert content for rendering in console.
- Dump into a dictionary
- Load and create a new instance from a dictionary
This way, all agents such as `AssistantAgent` and `SocietyOfMindAgent`
can utilize the unified interface to work with any built-in and
user-defined message type.
This PR also introduces a new message type, `StructuredMessage` for
AgentChat (Resolves#5131), which is a generic type that requires a
user-specified content type.
You can create a `StructuredMessage` as follow:
```python
class MessageType(BaseModel):
data: str
references: List[str]
message = StructuredMessage[MessageType](content=MessageType(data="data", references=["a", "b"]), source="user")
# message.content is of type `MessageType`.
```
This PR addresses the receving side of this message type. To produce
this message type from `AssistantAgent`, the work continue in #5934.
Added unit tests to verify this message type works with agents and
teams.
Add metadata field to BaseMessage.
Why?
- additional metadata field can track 1) timestamp if needed, 2) flags
about the message. For instance, a use case is a metadata field
{"internal":"yes"} that would hide messages from being displayed in an
application or studio.
As long as an extra field is added to basemessage that is not consumed
by existing agents, I am happy.
Notes:
- We can also only add it to BaseChatMessage, that would be fine
- I don't care what the extra field is called as long as there is an
extra field somewhere
- I don't have preference for the type, a str could work, but a dict
would be more useful.
---------
Co-authored-by: Eric Zhu <ekzhu@users.noreply.github.com>
Resolves#5192
Test
```python
import asyncio
import os
from random import randint
from typing import List
from autogen_core.tools import BaseTool, FunctionTool
from autogen_ext.models.openai import OpenAIChatCompletionClient
from autogen_agentchat.agents import AssistantAgent
from autogen_agentchat.ui import Console
async def get_current_time(city: str) -> str:
return f"The current time in {city} is {randint(0, 23)}:{randint(0, 59)}."
tools: List[BaseTool] = [
FunctionTool(
get_current_time,
name="get_current_time",
description="Get current time for a city.",
),
]
model_client = OpenAIChatCompletionClient(
model="anthropic/claude-3.5-haiku-20241022",
base_url="https://openrouter.ai/api/v1",
api_key=os.environ["OPENROUTER_API_KEY"],
model_info={
"family": "claude-3.5-haiku",
"function_calling": True,
"vision": False,
"json_output": False,
}
)
agent = AssistantAgent(
name="Agent",
model_client=model_client,
tools=tools,
system_message= "You are an assistant with some tools that can be used to answer some questions",
)
async def main() -> None:
await Console(agent.run_stream(task="What is current time of Paris and Toronto?"))
asyncio.run(main())
```
```
---------- user ----------
What is current time of Paris and Toronto?
---------- Agent ----------
I'll help you find the current time for Paris and Toronto by using the get_current_time function for each city.
---------- Agent ----------
[FunctionCall(id='toolu_01NwP3fNAwcYKn1x656Dq9xW', arguments='{"city": "Paris"}', name='get_current_time'), FunctionCall(id='toolu_018d4cWSy3TxXhjgmLYFrfRt', arguments='{"city": "Toronto"}', name='get_current_time')]
---------- Agent ----------
[FunctionExecutionResult(content='The current time in Paris is 1:10.', call_id='toolu_01NwP3fNAwcYKn1x656Dq9xW', is_error=False), FunctionExecutionResult(content='The current time in Toronto is 7:28.', call_id='toolu_018d4cWSy3TxXhjgmLYFrfRt', is_error=False)]
---------- Agent ----------
The current time in Paris is 1:10.
The current time in Toronto is 7:28.
```
---------
Co-authored-by: Jack Gerrits <jackgerrits@users.noreply.github.com>
Resolves#3983
* introduce `model_client_stream` parameter in `AssistantAgent` to
enable token-level streaming output.
* introduce `ModelClientStreamingChunkEvent` as a type of `AgentEvent`
to pass the streaming chunks to the application via `run_stream` and
`on_messages_stream`. Although this will not affect the inner messages
list in the final `Response` or `TaskResult`.
* handle this new message type in `Console`.
* Pass context between AssistantAgent for handoffs
* Add parallel tool call test
---------
Co-authored-by: Jack Gerrits <jackgerrits@users.noreply.github.com>
* initial base memroy impl
* update, add example with chromadb
* include mimetype consideration
* add transform method
* update to address feedback, will update after 4681 is merged
* update memory impl,
* remove chroma db, typing fixes
* format, add test
* update uv lock
* update docs
* format updates
* update notebook
* add memoryqueryevent message, yield message for observability.
* minor fixes, make score optional/none
* Update python/packages/autogen-agentchat/src/autogen_agentchat/agents/_assistant_agent.py
Co-authored-by: Eric Zhu <ekzhu@users.noreply.github.com>
* update tests to improve cov
* refactor, move memory to core.
* format fixxes
* format updates
* format updates
* fix azure notebook import, other fixes
* update notebook, support str query in Memory protocol
* update test
* update cells
* add specific extensible return types to memory query and update_context
---------
Co-authored-by: Eric Zhu <ekzhu@users.noreply.github.com>
* Add lock for input and output management in m1
* Use event to signal it is time to prompt for input
* undo stop change
* undo changes
* Update python/packages/magentic-one-cli/src/magentic_one_cli/_m1.py
Co-authored-by: Eric Zhu <ekzhu@users.noreply.github.com>
* reduce exported surface area
* fix
---------
Co-authored-by: Eric Zhu <ekzhu@users.noreply.github.com>
Co-authored-by: Hussein Mozannar <hmozannar@microsoft.com>
1. convert dataclass types to pydantic basemodel
2. add save_state and load_state for ChatAgent
3. state types for AgentChat
---------
Co-authored-by: Eric Zhu <ekzhu@users.noreply.github.com>
* Agentchat refactor
* Move termination stop message to a separate field in task result
* Update quick start example
* Use string stop reason instead of stop message in task result for simpler API
* Use main function
Add handoff message type to chat message types
Add Swarm group chat that uses handoff message to select next speaker
Remove tool call and tool call result message types from chat message types
Remove BaseToolUseChatAgent, move tool call handling from group chat's chat agent container upward to the ToolUseAssistantAgent implementation, which subclasses BaseChatAgent directly.
Renaming for better clarity
---------
Co-authored-by: Victor Dibia <victordibia@microsoft.com>