* Refactor into automl subpackage
Moved some of the packages into an automl subpackage to tidy before the
task-based refactor. This is in response to discussions with the group
and a comment on the first task-based PR.
Only changes here are moving subpackages and modules into the new
automl, fixing imports to work with this structure and fixing some
dependencies in setup.py.
* Fix doc building post automl subpackage refactor
* Fix broken links in website post automl subpackage refactor
* Fix broken links in website post automl subpackage refactor
* Remove vw from test deps as this is breaking the build
* Move default back to the top-level
I'd moved this to automl as that's where it's used internally, but had
missed that this is actually part of the public interface so makes sense
to live where it was.
* Re-add top level modules with deprecation warnings
flaml.data, flaml.ml and flaml.model are re-added to the top level,
being re-exported from flaml.automl for backwards compatability. Adding
a deprecation warning so that we can have a planned removal later.
* Fix model.py line-endings
* Pin pytorch-lightning to less than 1.8.0
We're seeing strange lightning related bugs from pytorch-forecasting
since the release of lightning 1.8.0. Going to try constraining this to
see if we have a fix.
* Fix the lightning version pin
Was optimistic with setting it in the 1.7.x range, but that isn't
compatible with python 3.6
* Remove lightning version pin
* Revert dependency version changes
* Minor change to retrigger the build
* Fix line endings in ml.py and model.py
Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu>
Co-authored-by: EgorKraevTransferwise <egor.kraev@transferwise.com>
* init value type match
* bump version to 1.0.6
* add a note about flaml version in notebook
* add note about mismatched ITER_HP
* catch SSLError when accessing OpenML data
* catch errors in autovw test
Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu>
* make AutoML inherit sklearn.base.BaseEstimator such that it can be wrapped in sklearn.multioutput.MultiOutputRegressor for multi-output regression.
* moved and simplified preprocessing code in AutoML.predictI() to _preprocess()
if save_best_model_per_estimator is False and retrain_final is True, unfit the model after evaluation in HPO.
retrain if using ray.
update ITER_HP in config after a trial is finished.
change prophet logging level.
example and notebook update.
allow settings to be passed to AutoML constructor. Are you planning to add multi-output-regression capability to FLAML #192 Is multi-tasking allowed? #277 can pass the auotml setting to the constructor instead of requiring a derived class.
remove model_history.
checkpoint bug fix.
* model_history meaning save_best_model_per_estimator
* ITER_HP
* example update
* prophet logging level
* comment update in forecast notebook
* print format improvement
* allow settings to be passed to AutoML constructor
* checkpoint bug fix
* time limit for autohf regression test
* skip slow test on macos
* cleanup before del