71 Commits

Author SHA1 Message Date
Chi Wang
3e7aac6e8b
unify auto_reply; bug fix in UserProxyAgent; reorg agent hierarchy (#1142)
* simplify the initiation of chat

* version update

* include openai

* completion

* load config list from json

* initiate_chat

* oai config list

* oai config list

* config list

* config_list

* raise_error

* retry_time

* raise condition

* oai config list

* catch file not found

* catch openml error

* handle openml error

* handle openml error

* handle openml error

* handle openml error

* handle openml error

* handle openml error

* close #1139

* use property

* termination msg

* AIUserProxyAgent

* smaller dev container

* update notebooks

* match

* document code execution and AIUserProxyAgent

* gpt 3.5 config list

* rate limit

* variable visibility

* remove unnecessary import

* quote

* notebook comments

* remove mathchat from init import

* two users

* import location

* expose config

* return str not tuple

* rate limit

* ipython user proxy

* message

* None result

* rate limit

* rate limit

* rate limit

* rate limit

* make auto_reply a common method for all agents

* abs path

* refactor and doc

* set mathchat_termination

* code format

* modified

* emove import

* code quality

* sender -> messages

* system message

* clean agent hierarchy

* dict check

* invalid oai msg

* return

* openml error

* docstr

---------

Co-authored-by: kevin666aa <yrwu000627@gmail.com>
2023-07-25 23:46:11 +00:00
Chi Wang
2406e69496
Json config list, agent refactoring and new notebooks (#1133)
* simplify the initiation of chat

* version update

* include openai

* completion

* load config list from json

* initiate_chat

* oai config list

* oai config list

* config list

* config_list

* raise_error

* retry_time

* raise condition

* oai config list

* catch file not found

* catch openml error

* handle openml error

* handle openml error

* handle openml error

* handle openml error

* handle openml error

* handle openml error

* close #1139

* use property

* termination msg

* AIUserProxyAgent

* smaller dev container

* update notebooks

* match

* document code execution and AIUserProxyAgent

* gpt 3.5 config list

* rate limit

* variable visibility

* remove unnecessary import

* quote

* notebook comments

* remove mathchat from init import

* two users

* import location

* expose config

* return str not tuple

* rate limit

* ipython user proxy

* message

* None result

* rate limit

* rate limit

* rate limit

* rate limit
2023-07-23 13:23:09 +00:00
EgorKraevTransferwise
5245efbd2c
Factor out time series-related functionality into a time series Task object (#989)
* Refactor into automl subpackage

Moved some of the packages into an automl subpackage to tidy before the
task-based refactor. This is in response to discussions with the group
and a comment on the first task-based PR.

Only changes here are moving subpackages and modules into the new
automl, fixing imports to work with this structure and fixing some
dependencies in setup.py.

* Fix doc building post automl subpackage refactor

* Fix broken links in website post automl subpackage refactor

* Fix broken links in website post automl subpackage refactor

* Remove vw from test deps as this is breaking the build

* Move default back to the top-level

I'd moved this to automl as that's where it's used internally, but had
missed that this is actually part of the public interface so makes sense
to live where it was.

* Re-add top level modules with deprecation warnings

flaml.data, flaml.ml and flaml.model are re-added to the top level,
being re-exported from flaml.automl for backwards compatability. Adding
a deprecation warning so that we can have a planned removal later.

* Fix model.py line-endings

* WIP

* WIP - Notes below

Got to the point where the methods from AutoML are pulled to
GenericTask. Started removing private markers and removing the passing
of automl to these methods. Done with decide_split_type, started on
prepare_data. Need to do the others after

* Re-add generic_task

* Most of the merge done, test_forecast_automl fit succeeds, fails at predict()

* Remaining fixes - test_forecast.py passes

* Comment out holidays-related code as it's not currently used

* Further holidays cleanup

* Fix imports in a test

* tidy up validate_data in time series task

* Test fixes

* Fix tests: add Task.__str__

* Fix tests: test for ray.ObjectRef

* Hotwire TS_Sklearn wrapper to fix test fail

* Attempt at test fix

* Fix test where val_pred_y is a list

* Attempt to fix remaining tests

* Push to retrigger tests

* Push to retrigger tests

* Push to retrigger tests

* Push to retrigger tests

* Remove plots from automl/test_forecast

* Remove unused data size field from Task

* Fix import for CLASSIFICATION in notebook

* Monkey patch TFT to avoid plotting, to fix tests on MacOS

* Monkey patch TFT to avoid plotting v2, to fix tests on MacOS

* Monkey patch TFT to avoid plotting v2, to fix tests on MacOS

* Fix circular import

* remove redundant code in task.py post-merge

* Fix test: set svd_solver="full" in PCA

* Update flaml/automl/data.py

Co-authored-by: Chi Wang <wang.chi@microsoft.com>

* Fix review comments

* Fix task -> str in custom learner constructor

* Remove unused CLASSIFICATION imports

* Hotwire TS_Sklearn wrapper to fix test fail by setting
optimizer_for_horizon == False

* Revert changes to the automl_classification and pin FLAML version

* Fix imports in reverted notebook

* Fix FLAML version in automl notebooks

* Fix ml.py line endings

* Fix CLASSIFICATION task import in automl_classification notebook

* Uncomment pip install in notebook and revert import

Not convinced this will work because of installing an older version of
the package into the environment in which we're running the tests, but
let's see.

* Revert c6a5dd1a0

* Fix get_classification_objective import in suggest.py

* Remove hcrystallball docs reference in TS_Sklearn

* Merge markharley:extract-task-class-from-automl into this

* Fix import, remove smooth.py

* Fix dependencies to fix TFT fail on Windows Python 3.8 and 3.9

* Add tensorboardX dependency to fix TFT fail on Windows Python 3.8 and 3.9

* Set pytorch-lightning==1.9.0 to fix  TFT fail on Windows Python 3.8 and 3.9

* Set pytorch-lightning==1.9.0 to fix  TFT fail on Windows Python 3.8 and 3.9

* Disable PCA reduction of lagged features for now, to fix svd convervence fail

* Merge flaml/main into time_series_task

* Attempt to fix formatting

* Attempt to fix formatting

* tentatively implement holt-winters-no covariates

* fix forecast method, clean class

* checking external regressors too

* update test forecast

* remove duplicated test file, re-add sarimax, search space cleanup

* Update flaml/automl/model.py

removed links. Most important one probably was: https://robjhyndman.com/hyndsight/ets-regressors/

Co-authored-by: Chi Wang <wang.chi@microsoft.com>

* prevent short series

* add docs

* First attempt at merging Holt-Winters

* Linter fix

* Add holt-winters to TimeSeriesTask.estimators

* Fix spark test fail

* Attempt to fix another spark test fail

* Attempt to fix another spark test fail

* Change Black max line length to 127

* Change Black max line length to 120

* Add logging for ARIMA params, clean up time series models inheritance

* Add more logging for missing ARIMA params

* Remove a meaningless test causing a fail, add stricter check on ARIMA params

* Fix a bug in HoltWinters

* A pointless change to hopefully trigger the on and off KeyError in ARIMA.fit()

* Fix formatting

* Attempt to fix formatting

* Attempt to fix formatting

* Attempt to fix formatting

* Attempt to fix formatting

* Add type annotations to _train_with_config() in state.py

* Add type annotations to prepare_sample_train_data() in state.py

* Add docstring for time_col argument of AutoML.fit()

* Address @sonichi's comments on PR

* Fix formatting

* Fix formatting

* Reduce test time budget

* Reduce test time budget

* Increase time budget for the test to pass

* Remove redundant imports

* Remove more redundant imports

* Minor fixes of points raised by Qingyun

* Try to fix pandas import fail

* Try to fix pandas import fail, again

* Try to fix pandas import fail, again

* Try to fix pandas import fail, again

* Try to fix pandas import fail, again

* Try to fix pandas import fail, again

* Try to fix pandas import fail, again

* Try to fix pandas import fail, again

* Try to fix pandas import fail, again

* Try to fix pandas import fail, again

* Try to fix pandas import fail, again

* Formatting fixes

* More formatting fixes

* Added test that loops over TS models to ensure coverage

* Fix formatting issues

* Fix more formatting issues

* Fix random fail in check

* Put back in tests for ARIMA predict without fit

* Put back in tests for lgbm

* Update test/test_model.py

cover dedup

* Match target length to X length in missing test

---------

Co-authored-by: Mark Harley <mark.harley@transferwise.com>
Co-authored-by: Mark Harley <mharley.code@gmail.com>
Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu>
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
Co-authored-by: Andrea W <a.ruggerini@ammagamma.com>
Co-authored-by: Andrea Ruggerini <nescio.adv@gmail.com>
Co-authored-by: Egor Kraev <Egor.Kraev@tw.com>
Co-authored-by: Li Jiang <bnujli@gmail.com>
2023-06-19 11:20:32 +00:00
Chi Wang
a0b318b12e
create an automl option to remove unnecessary dependency for autogen and tune (#1007)
* version update post release v1.2.2

* automl option

* import pandas

* remove automl.utils

* default

* test

* type hint and version update

* dependency update

* link to open in colab

* use packging.version to close #725

---------

Co-authored-by: Li Jiang <lijiang1@microsoft.com>
Co-authored-by: Li Jiang <bnujli@gmail.com>
2023-05-24 23:55:04 +00:00
garar
31864d2d77
Add mlflow_logging param (#1015)
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
2023-05-03 03:09:04 +00:00
Jirka Borovec
a701cd82f8
set black with 120 line length (#975)
* set black with 120 line length

* apply pre-commit

* apply black
2023-04-10 19:50:40 +00:00
Andrea Ruggerini
7f9402b8fd
Add Holt-Winters exponential smoothing (#962)
* tentatively implement holt-winters-no covariates

* fix forecast method, clean class

* checking external regressors too

* update test forecast

* remove duplicated test file, re-add sarimax, search space cleanup

* Update flaml/automl/model.py

removed links. Most important one probably was: https://robjhyndman.com/hyndsight/ets-regressors/

Co-authored-by: Chi Wang <wang.chi@microsoft.com>

* prevent short series

* add docs

---------

Co-authored-by: Andrea W <a.ruggerini@ammagamma.com>
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
2023-04-04 17:29:54 +00:00
Li Jiang
50334f2c52
Support spark dataframe as input dataset and spark models as estimators (#934)
* add basic support to Spark dataframe

add support to SynapseML LightGBM model

update to pyspark>=3.2.0 to leverage pandas_on_Spark API

* clean code, add TODOs

* add sample_train_data for pyspark.pandas dataframe, fix bugs

* improve some functions, fix bugs

* fix dict change size during iteration

* update model predict

* update LightGBM model, update test

* update SynapseML LightGBM params

* update synapseML and tests

* update TODOs

* Added support to roc_auc for spark models

* Added support to score of spark estimator

* Added test for automl score of spark estimator

* Added cv support to pyspark.pandas dataframe

* Update test, fix bugs

* Added tests

* Updated docs, tests, added a notebook

* Fix bugs in non-spark env

* Fix bugs and improve tests

* Fix uninstall pyspark

* Fix tests error

* Fix java.lang.OutOfMemoryError: Java heap space

* Fix test_performance

* Update test_sparkml to test_0sparkml to use the expected spark conf

* Remove unnecessary widgets in notebook

* Fix iloc java.lang.StackOverflowError

* fix pre-commit

* Added params check for spark dataframes

* Refactor code for train_test_split to a function

* Update train_test_split_pyspark

* Refactor if-else, remove unnecessary code

* Remove y from predict, remove mem control from n_iter compute

* Update workflow

* Improve _split_pyspark

* Fix test failure of too short training time

* Fix typos, improve docstrings

* Fix index errors of pandas_on_spark, add spark loss metric

* Fix typo of ndcgAtK

* Update NDCG metrics and tests

* Remove unuseful logger

* Use cache and count to ensure consistent indexes

* refactor for merge maain

* fix errors of refactor

* Updated SparkLightGBMEstimator and cache

* Updated config2params

* Remove unused import

* Fix unknown parameters

* Update default_estimator_list

* Add unit tests for spark metrics
2023-03-25 19:59:46 +00:00
Mark Harley
27b2712016
Extract task class from automl (#857)
* Refactor into automl subpackage

Moved some of the packages into an automl subpackage to tidy before the
task-based refactor. This is in response to discussions with the group
and a comment on the first task-based PR.

Only changes here are moving subpackages and modules into the new
automl, fixing imports to work with this structure and fixing some
dependencies in setup.py.

* Fix doc building post automl subpackage refactor

* Fix broken links in website post automl subpackage refactor

* Fix broken links in website post automl subpackage refactor

* Remove vw from test deps as this is breaking the build

* Move default back to the top-level

I'd moved this to automl as that's where it's used internally, but had
missed that this is actually part of the public interface so makes sense
to live where it was.

* Re-add top level modules with deprecation warnings

flaml.data, flaml.ml and flaml.model are re-added to the top level,
being re-exported from flaml.automl for backwards compatability. Adding
a deprecation warning so that we can have a planned removal later.

* Fix model.py line-endings

* WIP

* WIP - Notes below

Got to the point where the methods from AutoML are pulled to
GenericTask. Started removing private markers and removing the passing
of automl to these methods. Done with decide_split_type, started on
prepare_data. Need to do the others after

* Re-add generic_task

* Fix tests: add Task.__str__

* Fix tests: test for ray.ObjectRef

* Hotwire TS_Sklearn wrapper to fix test fail

* Remove unused data size field from Task

* Fix import for CLASSIFICATION in notebook

* Update flaml/automl/data.py

Co-authored-by: Chi Wang <wang.chi@microsoft.com>

* Fix review comments

* Fix task -> str in custom learner constructor

* Remove unused CLASSIFICATION imports

* Hotwire TS_Sklearn wrapper to fix test fail by setting
optimizer_for_horizon == False

* Revert changes to the automl_classification and pin FLAML version

* Fix imports in reverted notebook

* Fix FLAML version in automl notebooks

* Fix ml.py line endings

* Fix CLASSIFICATION task import in automl_classification notebook

* Uncomment pip install in notebook and revert import

Not convinced this will work because of installing an older version of
the package into the environment in which we're running the tests, but
let's see.

* Revert c6a5dd1a0

* Revert "Revert c6a5dd1a0"

This reverts commit e55e35adea03993de87b23f092b14c6af623d487.

* Black format model.py

* Bump version to 1.1.2 in automl_xgboost

* Add docstrings to the Task ABC

* Fix import in custom_learner

* fix 'optimize_for_horizon' for ts_sklearn

* remove debugging print statements

* Check for is_forecast() before is_classification() in decide_split_type

* Attempt to fix formatting fail

* Another attempt to fix formatting fail

* And another attempt to fix formatting fail

* Add type annotations for task arg in signatures and docstrings

* Fix formatting

* Fix linting

---------

Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu>
Co-authored-by: EgorKraevTransferwise <egor.kraev@transferwise.com>
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
Co-authored-by: Kevin Chen <chenkevin.8787@gmail.com>
2023-03-11 02:39:08 +00:00
Jirka Borovec
6aa1d16ebc
pre-commit: update config (#925)
* update config

* apply precommit
2023-02-22 00:49:38 +00:00
Chi Wang
fbea1d06dd
stratified group kfold splitter (#899)
* stratified group kfold splitter

* exclude catboost

---------

Co-authored-by: Shaokun <shaokunzhang529@gmail.com>
Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu>
2023-02-05 18:26:14 -05:00
Chi Wang
75e3454120
notebook test; spark warning message; reproducibility bug; sequential tuning stop condition (#869)
* notebook test

* add ipykernel, remove except

* only create dir if not empty

* Stop sequential tuning when result is None

* fix reproducibility of global search

* save gs seed

* use get to avoid KeyError

* test
2023-01-07 18:39:29 -08:00
Antoni Baum
5f67c0ab8a
Do not persist entire AutoMLState in Searcher (#870)
* Do not persist entire AutoMLState in Searcher

Signed-off-by: Antoni Baum <antoni.baum@protonmail.com>

* Fix tests

Signed-off-by: Antoni Baum <antoni.baum@protonmail.com>

Signed-off-by: Antoni Baum <antoni.baum@protonmail.com>
2023-01-05 18:00:05 -08:00
Chi Wang
232c356a4b
fix bug related to _choice_ (#848)
* fix bug related to _choice_

* remove py 3.6

* sanitize config

* optimize test
2022-12-13 15:48:32 -05:00
Mark Harley
44ddf9e104
Refactor into automl subpackage (#809)
* Refactor into automl subpackage

Moved some of the packages into an automl subpackage to tidy before the
task-based refactor. This is in response to discussions with the group
and a comment on the first task-based PR.

Only changes here are moving subpackages and modules into the new
automl, fixing imports to work with this structure and fixing some
dependencies in setup.py.

* Fix doc building post automl subpackage refactor

* Fix broken links in website post automl subpackage refactor

* Fix broken links in website post automl subpackage refactor

* Remove vw from test deps as this is breaking the build

* Move default back to the top-level

I'd moved this to automl as that's where it's used internally, but had
missed that this is actually part of the public interface so makes sense
to live where it was.

* Re-add top level modules with deprecation warnings

flaml.data, flaml.ml and flaml.model are re-added to the top level,
being re-exported from flaml.automl for backwards compatability. Adding
a deprecation warning so that we can have a planned removal later.

* Fix model.py line-endings

* Pin pytorch-lightning to less than 1.8.0

We're seeing strange lightning related bugs from pytorch-forecasting
since the release of lightning 1.8.0. Going to try constraining this to
see if we have a fix.

* Fix the lightning version pin

Was optimistic with setting it in the 1.7.x range, but that isn't
compatible with python 3.6

* Remove lightning version pin

* Revert dependency version changes

* Minor change to retrigger the build

* Fix line endings in ml.py and model.py

Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu>
Co-authored-by: EgorKraevTransferwise <egor.kraev@transferwise.com>
2022-12-06 15:46:08 -05:00
Chi Wang
92b79221b6
make performance test reproducible (#837)
* make performance test reproducible

* fix test error

* Doc update and disable logging

* document random_state and version

* remove hardcoded budget

* fix test error and dependency; close #777

* iloc
2022-12-06 10:13:39 -08:00
Shreyas
3b3b0bfa8e
roc_auc_weighted metric addition (#827)
* Pending changes exported from your codespace

* Update flaml/automl.py

Co-authored-by: Chi Wang <wang.chi@microsoft.com>

* Update flaml/automl.py

Co-authored-by: Chi Wang <wang.chi@microsoft.com>

* Update flaml/ml.py

Co-authored-by: Chi Wang <wang.chi@microsoft.com>

* Update flaml/ml.py

Co-authored-by: Chi Wang <wang.chi@microsoft.com>

* Update website/docs/Examples/Integrate - Scikit-learn Pipeline.md

Co-authored-by: Chi Wang <wang.chi@microsoft.com>

* added documentation for new metric

* Update flaml/ml.py

Co-authored-by: Chi Wang <wang.chi@microsoft.com>

* minor notebook changes

* Update Integrate - Scikit-learn Pipeline.md

* Update notebook/automl_classification.ipynb

Co-authored-by: Chi Wang <wang.chi@microsoft.com>

* Update integrate_azureml.ipynb

Co-authored-by: Chi Wang <wang.chi@microsoft.com>
2022-12-02 19:27:32 -08:00
Chi Wang
595af7a04f
install editable package in codespace (#826)
* install editable package in codespace

* fix test error in test_forecast

* fix test error in test_space

* openml version

* break tests; pre-commit

* skip on py10+win32

* install mlflow in test

* install mlflow in [test]

* skip test in windows

* import

* handle PermissionError

* skip test in windows

* skip test in windows

* skip test in windows

* skip test in windows

* remove ts_forecast_panel from doc
2022-11-27 14:22:54 -05:00
Xueqing Liu
2314cc5a7e
"intermediate_results" TypeError: argument of type 'NoneType' is not iterable (#695)
* fix mlflow bug

* bump version
2022-08-22 13:36:50 -04:00
Chi Wang
dffa802b3e
use_best_model for catboost (#679)
* use_best_model for catboost

* bump version to 1.0.11
2022-08-20 18:38:56 -07:00
Chi Wang
5e1059ab82
check config constraints for the initial config (#685)
* check config constraints for the initial config

* default config value
2022-08-15 05:30:23 -07:00
jmrichardson
e43485607a
Disable shuffle for custom CV (#659)
* Disable shuffle for custom CV

* Add custom fold shuffle test

* Update test_split.py

* Update test_split.py
2022-08-12 17:05:32 -07:00
Kevin Chen
f718d18b5e
time series forecasting with panel datasets (#541)
* time series forecasting with panel datasets
- integrate Temporal Fusion Transformer as a learner based on pytorchforecasting

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update setup.py

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update test_forecast.py

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update setup.py

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update setup.py

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update model.py and test_forecast.py
- remove blank lines

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update model.py to prevent errors

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update automl.py and data.py
- change forecast task name
- update documentation for fit() method

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update test_forecast.py

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update test_forecast.py
- add performance test
- use 'fit_kwargs_by_estimator'

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* add time index function

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update test_forecast.py performance test

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update data.py

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update automl.py

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update data.py to prevent type error

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update setup.py

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update for pytorch forecasting tft on panel datasets

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update automl.py documentations

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* - rename estimator
- add 'gpu_per_trial' for tft estimator

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update test_forecast.py

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* include ts panel forecasting as an example

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update model.py

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update documentations

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update automl_time_series_forecast.ipynb

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update documentations

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* "weights_summary" argument deprecated and removed for pl.Trainer()

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update model.py tft estimator prediction method

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update model.py

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update `fit_kwargs` documentation

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update automl.py

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
2022-08-12 08:39:22 -07:00
jmrichardson
25ad397d55
Skip transform (#665)
* Skip transform

* Fix logic and docstring, add test

* Add period ending to skip_transform doc

* Add skip_transform to retrain_from_log method

* Update test/automl/test_classification.py

Co-authored-by: Xueqing Liu <liususan091219@users.noreply.github.com>

Co-authored-by: Xueqing Liu <liususan091219@users.noreply.github.com>
2022-08-11 19:41:23 -04:00
Chi Wang
816a82a115
make test result more stable (#646) 2022-08-05 10:17:41 -07:00
Xueqing Liu
5eb5d43d7f
Fix HPO evaluation bug (#645)
* fix eval automl metric bug on val_loss inconsistency

* updating starting point search space to continuous

* shortening notebok
2022-07-28 23:08:42 -04:00
Chi Wang
e14e909af9
Feature names and importances (#621)
* feature names and importances

* None check

* StackingClassifier has no feature_importances_

* StackingClassifier has no feature_names_in_
2022-07-10 12:25:59 -07:00
Qingyun Wu
b7846048dc
Allow FLAML_sample_size in starting_points (#619)
* FLAML_sample_size

* clean up

* starting_points as a list

* catch AssertionError

* per estimator sample size

* import

* per estimator min_sample_size

* Update flaml/automl.py

Co-authored-by: Chi Wang <wang.chi@microsoft.com>

* Update test/automl/test_warmstart.py

Co-authored-by: Chi Wang <wang.chi@microsoft.com>

* add warnings

* adding more tests

* fix a bug in validating starting points

* improve test

* revise test

* revise test

* documentation about custom_hp

* doc and efficiency

* update test

Co-authored-by: Chi Wang <wang.chi@microsoft.com>
2022-07-09 16:04:46 -04:00
Chi Wang
74cca60606
Allow custom GroupKFold object as split_type (#616)
* Allow custom GroupKFold object

* handle unpickle error for prophet 1.1

* eval_method in test_object()
2022-06-29 21:04:25 -07:00
Chi Wang
7d6822aa40 cath URLError 2022-06-24 08:07:26 -07:00
Chi Wang
4377d53a73
update got version (#607)
* update got version

* None check
2022-06-23 08:02:46 -07:00
Chi Wang
c45741a67b
support latest xgboost version (#599)
* support latest xgboost version

* Update test_classification.py

* Update 

Exists problems when installing xgb1.6.1 in py3.6

* cleanup

* xgboost version

* remove time_budget_s in test

* remove redundancy

* stop support of python 3.6

Co-authored-by: zsk <shaokunzhang529@gmail.com>
Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu>
2022-06-21 18:59:07 -07:00
Chi Wang
f8cc38bc16
enable ensemble when using ray (#583)
* enable ensemble when using ray

* sanitize config
2022-06-10 21:28:47 -07:00
Chi Wang
0642b6e7bb
init value type match (#575)
* init value type match

* bump version to 1.0.6

* add a note about flaml version in notebook

* add note about mismatched ITER_HP

* catch SSLError when accessing OpenML data

* catch errors in autovw test

Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu>
2022-06-09 08:11:15 -07:00
Xueqing Liu
e0e317bfb1
fixing trainable and update function, completing NOTE (#566)
* fix checkpoint naming + trial id for non-ray mode, fix the bug in running test mode, delete all the checkpoints in non-ray mode

* finished testing for checkpoint naming, delete checkpoint, ray, max iter = 1
2022-06-03 15:19:22 -04:00
Chi Wang
1af682b7f5
update doc about scheduler exception (#564)
* update doc about scheduler exception

* remove assert
2022-05-31 17:21:57 -07:00
Chi Wang
49e8f7f028
use zeroshot when no budget is given; custom_hp (#563)
* use zeroshot when no budget is given; custom_hp

* update Getting-Started

* protobuf version

* X_val
2022-05-28 17:22:09 -07:00
Qiaochu Song
2851134052
Quick-fix (#539)
* fix doc string; enable label transform in automl.score
2022-05-19 11:43:34 -04:00
Chi Wang
7126b69ce0
choose n_jobs for ensemble according to n_jobs per learner (#551)
* set n_jobs in ensemble dict

* catch the ensemble error

* choose n_jobs for stacker

* clarify
2022-05-18 21:01:51 -07:00
Xueqing Liu
2a8decdc50
fix the post-processing bug in NER (#534)
* fix conll bug

* update DataCollatorForAuto

* adding label_list comments
2022-05-10 17:22:57 -04:00
Chi Wang
c1bb66980c
test reproducibility from retrain (#533) 2022-05-07 09:13:17 -07:00
Chi Wang
e877de6414 use ffill in forecasting example 2022-04-01 09:23:23 -07:00
Chi Wang
84f1ae7424
Bump minimist from 1.2.5 to 1.2.6 in /website (#502)
* Bump minimist from 1.2.5 to 1.2.6 in /website

* check best_config in test
2022-03-30 22:19:47 -07:00
Qingyun Wu
2cdc08a75a update notebook and test 2022-03-30 19:11:10 -07:00
Chi Wang
9128c8811a
handle failing trials (#505)
* handle failing trials

* clarify when to return {}

* skip ensemble in accuracy check
2022-03-28 16:57:52 -07:00
Qingyun Wu
6c16e47e42
Bug fix and add documentation for metric_constraints (#498)
* metric constraint documentation

* update link

* update notebook

* fix a bug in adding 'time_total_s' to result

* use the default multiple factor from config file

* update notebook

* format

* improve test

* revise test budget for macos

* bug fix in adding time_total_s

* increase performance check budget

* revise test

* update notebook

* uncomment test

* remove redundancy

* clear output

* remove n_jobs

* remove constraint in notebook

* increase budget

* revise test

* add python version

* use getattr

* improve code robustness

Co-authored-by: Qingyun Wu <qxw5138@psu.edu>
2022-03-26 21:11:45 -04:00
Xueqing Liu
5f97532986
adding evaluation (#495)
* adding automl.score

* fixing the metric name in train_with_config

* adding pickle after score

* fixing a bug in automl.pickle
2022-03-25 17:00:08 -04:00
Xueqing Liu
af423463c3
fixing bug for ner (#463)
* fixing bug for ner

* removing global var

* adding class for trial counter

* adding notebook

* adding use_ray dict

* updating documentation for nlp
2022-03-20 22:03:02 -04:00
Qingyun Wu
f6ae1331f5
metric constraints in flaml.automl (#479)
* metric constraints

* revise docstr

* fix docstr

* improve docstr

* Update flaml/automl.py

Co-authored-by: Chi Wang <wang.chi@microsoft.com>

* Update flaml/automl.py

Co-authored-by: Chi Wang <wang.chi@microsoft.com>

* Update flaml/automl.py

Co-authored-by: Chi Wang <wang.chi@microsoft.com>

* docstr

Co-authored-by: Qingyun Wu <qxw5138@psu.edu>
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
2022-03-12 00:39:35 -05:00
Kevin Chen
f9eda0cc40
update documentation for time series forecasting (#472)
* update automl.py
- documentation update

* update test_forecast.py

* update model.py

* update automl_time_series_forecast.ipynb

* update time series forecast website examples

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
2022-03-08 11:21:18 -08:00