FLAML can be used together with AzureML and mlflow. ### Prerequisites Install the [azureml] option. ```bash pip install "flaml[azureml]" ``` Setup a AzureML workspace: ```python from azureml.core import Workspace ws = Workspace.create(name='myworkspace', subscription_id='',resource_group='myresourcegroup') ``` ### Enable mlflow in AzureML workspace ```python import mlflow from azureml.core import Workspace ws = Workspace.from_config() mlflow.set_tracking_uri(ws.get_mlflow_tracking_uri()) ``` ### Start an AutoML run ```python from flaml.data import load_openml_dataset # Download [Airlines dataset](https://www.openml.org/d/1169) from OpenML. The task is to predict whether a given flight will be delayed, given the information of the scheduled departure. X_train, X_test, y_train, y_test = load_openml_dataset(dataset_id=1169, data_dir="./") from flaml import AutoML automl = AutoML() settings = { "time_budget": 60, # total running time in seconds "metric": "accuracy", # metric to optimize "task": "classification", # task type "log_file_name": "airlines_experiment.log", # flaml log file } mlflow.set_experiment("flaml") # the experiment name in AzureML workspace with mlflow.start_run() as run: # create a mlflow run automl.fit(X_train=X_train, y_train=y_train, **settings) ``` The metrics in the run will be automatically logged in an experiment named "flaml" in your AzureML workspace. [Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/integrate_azureml.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/integrate_azureml.ipynb)