from unittest.mock import MagicMock, patch import pytest try: from google.api_core.exceptions import InternalServerError from autogen.oai.gemini import GeminiClient skip = False except ImportError: GeminiClient = object InternalServerError = object skip = True # Fixtures for mock data @pytest.fixture def mock_response(): class MockResponse: def __init__(self, text, choices, usage, cost, model): self.text = text self.choices = choices self.usage = usage self.cost = cost self.model = model return MockResponse @pytest.fixture def gemini_client(): return GeminiClient(api_key="fake_api_key") # Test compute location initialization and configuration @pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed") def test_compute_location_initialization(): with pytest.raises(AssertionError): GeminiClient( api_key="fake_api_key", location="us-west1" ) # Should raise an AssertionError due to specifying API key and compute location @pytest.fixture def gemini_google_auth_default_client(): return GeminiClient() @pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed") def test_valid_initialization(gemini_client): assert gemini_client.api_key == "fake_api_key", "API Key should be correctly set" @pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed") def test_gemini_message_handling(gemini_client): messages = [ {"role": "system", "content": "You are my personal assistant."}, {"role": "model", "content": "How can I help you?"}, {"role": "user", "content": "Which planet is the nearest to the sun?"}, {"role": "user", "content": "Which planet is the farthest from the sun?"}, {"role": "model", "content": "Mercury is the closest palnet to the sun."}, {"role": "model", "content": "Neptune is the farthest palnet from the sun."}, {"role": "user", "content": "How can we determine the mass of a black hole?"}, ] # The datastructure below defines what the structure of the messages # should resemble after converting to Gemini format. # Messages of similar roles are expected to be merged to a single message, # where the contents of the original messages will be included in # consecutive parts of the converted Gemini message expected_gemini_struct = [ # system role is converted to user role {"role": "user", "parts": ["You are my personal assistant."]}, {"role": "model", "parts": ["How can I help you?"]}, { "role": "user", "parts": ["Which planet is the nearest to the sun?", "Which planet is the farthest from the sun?"], }, { "role": "model", "parts": ["Mercury is the closest palnet to the sun.", "Neptune is the farthest palnet from the sun."], }, {"role": "user", "parts": ["How can we determine the mass of a black hole?"]}, ] converted_messages = gemini_client._oai_messages_to_gemini_messages(messages) assert len(converted_messages) == len(expected_gemini_struct), "The number of messages is not as expected" for i, expected_msg in enumerate(expected_gemini_struct): assert expected_msg["role"] == converted_messages[i].role, "Incorrect mapped message role" for j, part in enumerate(expected_msg["parts"]): assert converted_messages[i].parts[j].text == part, "Incorrect mapped message text" # Test error handling @patch("autogen.oai.gemini.genai") @pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed") def test_internal_server_error_retry(mock_genai, gemini_client): mock_genai.GenerativeModel.side_effect = [InternalServerError("Test Error"), None] # First call fails # Mock successful response mock_chat = MagicMock() mock_chat.send_message.return_value = "Successful response" mock_genai.GenerativeModel.return_value.start_chat.return_value = mock_chat with patch.object(gemini_client, "create", return_value="Retried Successfully"): response = gemini_client.create({"model": "gemini-pro", "messages": [{"content": "Hello"}]}) assert response == "Retried Successfully", "Should retry on InternalServerError" # Test cost calculation @pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed") def test_cost_calculation(gemini_client, mock_response): response = mock_response( text="Example response", choices=[{"message": "Test message 1"}], usage={"prompt_tokens": 10, "completion_tokens": 5, "total_tokens": 15}, cost=0.01, model="gemini-pro", ) assert gemini_client.cost(response) > 0, "Cost should be correctly calculated as zero" @pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed") @patch("autogen.oai.gemini.genai.GenerativeModel") @patch("autogen.oai.gemini.genai.configure") def test_create_response(mock_configure, mock_generative_model, gemini_client): # Mock the genai model configuration and creation process mock_chat = MagicMock() mock_model = MagicMock() mock_configure.return_value = None mock_generative_model.return_value = mock_model mock_model.start_chat.return_value = mock_chat # Set up a mock for the chat history item access and the text attribute return mock_history_part = MagicMock() mock_history_part.text = "Example response" mock_chat.history.__getitem__.return_value.parts.__getitem__.return_value = mock_history_part # Setup the mock to return a mocked chat response mock_chat.send_message.return_value = MagicMock(history=[MagicMock(parts=[MagicMock(text="Example response")])]) # Call the create method response = gemini_client.create( {"model": "gemini-pro", "messages": [{"content": "Hello", "role": "user"}], "stream": False} ) # Assertions to check if response is structured as expected assert response.choices[0].message.content == "Example response", "Response content should match expected output" @pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed") @patch("autogen.oai.gemini.genai.GenerativeModel") @patch("autogen.oai.gemini.genai.configure") def test_create_vision_model_response(mock_configure, mock_generative_model, gemini_client): # Mock the genai model configuration and creation process mock_model = MagicMock() mock_configure.return_value = None mock_generative_model.return_value = mock_model # Set up a mock to simulate the vision model behavior mock_vision_response = MagicMock() mock_vision_part = MagicMock(text="Vision model output") # Setting up the chain of return values for vision model response mock_vision_response._result.candidates.__getitem__.return_value.content.parts.__getitem__.return_value = ( mock_vision_part ) mock_model.generate_content.return_value = mock_vision_response # Call the create method with vision model parameters response = gemini_client.create( { "model": "gemini-pro-vision", # Vision model name "messages": [ { "content": [ {"type": "text", "text": "Let's play a game."}, { "type": "image_url", "image_url": { "url": "" }, }, ], "role": "user", } ], # Assuming a simple content input for vision "stream": False, } ) # Assertions to check if response is structured as expected assert ( response.choices[0].message.content == "Vision model output" ), "Response content should match expected output from vision model"