from flaml.data import load_openml_dataset from flaml.default import LGBMRegressor from flaml.ml import sklearn_metric_loss_score X_train, X_test, y_train, y_test = load_openml_dataset(dataset_id=537, data_dir="./") lgbm = LGBMRegressor() hyperparams, estimator_name, X_transformed, y_transformed = lgbm.suggest_hyperparams( X_train, y_train ) print(hyperparams) lgbm.fit(X_train, y_train) y_pred = lgbm.predict(X_test) print("flamlized lgbm r2 =", 1 - sklearn_metric_loss_score("r2", y_pred, y_test)) print(lgbm)