# This file is copied from NNI project # https://github.com/microsoft/nni/blob/master/examples/trials/mnist-tfv1/mnist.py """ A deep MNIST classifier using convolutional layers. This file is a modification of the official pytorch mnist example: https://github.com/pytorch/examples/blob/master/mnist/main.py """ import os import argparse import logging import nni import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from nni.utils import merge_parameter from torchvision import datasets, transforms logger = logging.getLogger("mnist_AutoML") class Net(nn.Module): def __init__(self, hidden_size): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5, 1) self.conv2 = nn.Conv2d(20, 50, 5, 1) self.fc1 = nn.Linear(4 * 4 * 50, hidden_size) self.fc2 = nn.Linear(hidden_size, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2, 2) x = x.view(-1, 4 * 4 * 50) x = F.relu(self.fc1(x)) x = self.fc2(x) return F.log_softmax(x, dim=1) def train(args, model, device, train_loader, optimizer, epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): if (args["batch_num"] is not None) and batch_idx >= args["batch_num"]: break data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() if batch_idx % args["log_interval"] == 0: logger.info( "Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format( epoch, batch_idx * len(data), len(train_loader.dataset), 100.0 * batch_idx / len(train_loader), loss.item(), ) ) def test(args, model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) # sum up batch loss test_loss += F.nll_loss(output, target, reduction="sum").item() # get the index of the max log-probability pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) accuracy = 100.0 * correct / len(test_loader.dataset) logger.info( "\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n".format( test_loss, correct, len(test_loader.dataset), accuracy ) ) return accuracy def main(args): use_cuda = not args["no_cuda"] and torch.cuda.is_available() torch.manual_seed(args["seed"]) device = torch.device("cuda" if use_cuda else "cpu") kwargs = {"num_workers": 1, "pin_memory": True} if use_cuda else {} data_dir = args["data_dir"] train_loader = torch.utils.data.DataLoader( datasets.MNIST( data_dir, train=True, download=True, transform=transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))] ), ), batch_size=args["batch_size"], shuffle=True, **kwargs ) test_loader = torch.utils.data.DataLoader( datasets.MNIST( data_dir, train=False, transform=transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))] ), ), batch_size=1000, shuffle=True, **kwargs ) hidden_size = args["hidden_size"] model = Net(hidden_size=hidden_size).to(device) optimizer = optim.SGD(model.parameters(), lr=args["lr"], momentum=args["momentum"]) for epoch in range(1, args["epochs"] + 1): train(args, model, device, train_loader, optimizer, epoch) test_acc = test(args, model, device, test_loader) # report intermediate result nni.report_intermediate_result(test_acc) logger.debug("test accuracy %g", test_acc) logger.debug("Pipe send intermediate result done.") # report final result nni.report_final_result(test_acc) logger.debug("Final result is %g", test_acc) logger.debug("Send final result done.") def get_params(): # Training settings parser = argparse.ArgumentParser(description="PyTorch MNIST Example") parser.add_argument("--data_dir", type=str, default="./data", help="data directory") parser.add_argument( "--batch_size", type=int, default=64, metavar="N", help="input batch size for training (default: 64)", ) parser.add_argument("--batch_num", type=int, default=None) parser.add_argument( "--hidden_size", type=int, default=512, metavar="N", help="hidden layer size (default: 512)", ) parser.add_argument( "--lr", type=float, default=0.01, metavar="LR", help="learning rate (default: 0.01)", ) parser.add_argument( "--momentum", type=float, default=0.5, metavar="M", help="SGD momentum (default: 0.5)", ) parser.add_argument( "--epochs", type=int, default=10, metavar="N", help="number of epochs to train (default: 10)", ) parser.add_argument( "--seed", type=int, default=1, metavar="S", help="random seed (default: 1)" ) parser.add_argument( "--no_cuda", action="store_true", default=False, help="disables CUDA training" ) parser.add_argument( "--log_interval", type=int, default=1000, metavar="N", help="how many batches to wait before logging training status", ) args, _ = parser.parse_known_args() return args if __name__ == "__main__": try: # get parameters form tuner tuner_params = nni.get_next_parameter() logger.debug(tuner_params) params = vars(merge_parameter(get_params(), tuner_params)) print(params) main(params) except Exception as exception: logger.exception(exception) raise