from ray_on_aml.core import Ray_On_AML import lightgbm as lgb import numpy as np from sklearn.datasets import load_breast_cancer from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from flaml import tune from flaml.model import LGBMEstimator def train_breast_cancer(config): params = LGBMEstimator(**config).params X_train = ray.get(X_train_ref) train_set = lgb.Dataset(X_train, label=y_train) gbm = lgb.train(params, train_set) preds = gbm.predict(X_test) pred_labels = np.rint(preds) tune.report(mean_accuracy=accuracy_score(y_test, pred_labels), done=True) if __name__ == "__main__": ray_on_aml = Ray_On_AML() ray = ray_on_aml.getRay() if ray: X, y = load_breast_cancer(return_X_y=True) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25) X_train_ref = ray.put(X_train) flaml_lgbm_search_space = LGBMEstimator.search_space(X_train.shape) config_search_space = { hp: space["domain"] for hp, space in flaml_lgbm_search_space.items() } low_cost_partial_config = { hp: space["low_cost_init_value"] for hp, space in flaml_lgbm_search_space.items() if "low_cost_init_value" in space } analysis = tune.run( train_breast_cancer, metric="mean_accuracy", mode="max", config=config_search_space, num_samples=-1, time_budget_s=60, use_ray=True, ) # print("Best hyperparameters found were: ", analysis.best_config) print("The best trial's result: ", analysis.best_trial.last_result)