from flaml import AutoML from sklearn.datasets import fetch_california_housing # Initialize an AutoML instance automl = AutoML() # Specify automl goal and constraint automl_settings = { "time_budget": 1, # in seconds "metric": "r2", "task": "regression", "log_file_name": "test/california.log", } X_train, y_train = fetch_california_housing(return_X_y=True) # Train with labeled input data automl.fit(X_train=X_train, y_train=y_train, **automl_settings) print(automl.model) print(automl.model.estimator) print(automl.best_estimator) print(automl.best_config) print(automl.best_config_per_estimator) print(automl.best_config_train_time) print(automl.best_iteration) print(automl.best_loss) print(automl.time_to_find_best_model) print(automl.config_history)