import pytest from pathlib import Path from flaml import AutoML from sklearn.datasets import load_iris @pytest.mark.conda def test_package_minimum(): # Initialize an AutoML instance automl = AutoML() # Specify automl goal and constraint automl_settings = { "time_budget": 10, # in seconds "metric": "accuracy", "task": "classification", "log_file_name": "iris.log", } X_train, y_train = load_iris(return_X_y=True) # Train with labeled input data automl.fit(X_train=X_train, y_train=y_train, **automl_settings) # Check that `best_config` is created, the log was created and best model is accessible assert hasattr(automl, "best_config") assert Path("iris.log").exists() assert automl.model is not None print(automl.model) # Predict and check that the prediction shape is as expected preds = automl.predict_proba(X_train) assert preds.shape == (150, 3) print(preds)