import pytest import os import sys import autogen sys.path.append(os.path.join(os.path.dirname(__file__), "..")) from test_assistant_agent import KEY_LOC, OAI_CONFIG_LIST # noqa: E402 try: from autogen.agentchat.contrib.gpt_assistant_agent import GPTAssistantAgent skip_test = False except ImportError: skip_test = True config_list = autogen.config_list_from_json( OAI_CONFIG_LIST, file_location=KEY_LOC, filter_dict={"api_type": ["openai"]} ) def ask_ossinsight(question): return f"That is a good question, but I don't know the answer yet. Please ask your human developer friend to help you. \n\n{question}" @pytest.mark.skipif( sys.platform in ["darwin", "win32"] or skip_test, reason="do not run on MacOS or windows or dependency is not installed", ) def test_gpt_assistant_chat(): ossinsight_api_schema = { "name": "ossinsight_data_api", "parameters": { "type": "object", "properties": { "question": { "type": "string", "description": "Enter your GitHub data question in the form of a clear and specific question to ensure the returned data is accurate and valuable. For optimal results, specify the desired format for the data table in your request.", } }, "required": ["question"], }, "description": "This is an API endpoint allowing users (analysts) to input question about GitHub in text format to retrieve the realted and structured data.", } analyst = GPTAssistantAgent( name="Open_Source_Project_Analyst", llm_config={"tools": [{"type": "function", "function": ossinsight_api_schema}], "config_list": config_list}, instructions="Hello, Open Source Project Analyst. You'll conduct comprehensive evaluations of open source projects or organizations on the GitHub platform", ) analyst.register_function( function_map={ "ossinsight_data_api": ask_ossinsight, } ) ok, response = analyst._invoke_assistant( [{"role": "user", "content": "What is the most popular open source project on GitHub?"}] ) assert ok is True assert response.get("role", "") == "assistant" assert len(response.get("content", "")) > 0 assert analyst.can_execute_function("ossinsight_data_api") is False analyst.reset() assert len(analyst._openai_threads) == 0 @pytest.mark.skipif( sys.platform in ["darwin", "win32"] or skip_test, reason="do not run on MacOS or windows or dependency is not installed", ) def test_get_assistant_instructions(): """ Test function to create a new GPTAssistantAgent, set its instructions, retrieve the instructions, and assert that the retrieved instructions match the set instructions. """ assistant = GPTAssistantAgent( "assistant", instructions="This is a test", llm_config={ "config_list": config_list, }, ) instruction_match = assistant.get_assistant_instructions() == "This is a test" assistant.delete_assistant() assert instruction_match is True @pytest.mark.skipif( sys.platform in ["darwin", "win32"] or skip_test, reason="do not run on MacOS or windows or dependency is not installed", ) def test_gpt_assistant_instructions_overwrite(): """ Test that the instructions of a GPTAssistantAgent can be overwritten or not depending on the value of the `overwrite_instructions` parameter when creating a new assistant with the same ID. Steps: 1. Create a new GPTAssistantAgent with some instructions. 2. Get the ID of the assistant. 3. Create a new GPTAssistantAgent with the same ID but different instructions and `overwrite_instructions=True`. 4. Check that the instructions of the assistant have been overwritten with the new ones. """ instructions1 = "This is a test #1" instructions2 = "This is a test #2" assistant = GPTAssistantAgent( "assistant", instructions=instructions1, llm_config={ "config_list": config_list, }, ) assistant_id = assistant.assistant_id assistant = GPTAssistantAgent( "assistant", instructions=instructions2, llm_config={ "config_list": config_list, "assistant_id": assistant_id, }, overwrite_instructions=True, ) instruction_match = assistant.get_assistant_instructions() == instructions2 assistant.delete_assistant() assert instruction_match is True @pytest.mark.skipif( sys.platform in ["darwin", "win32"] or skip_test, reason="do not run on MacOS or windows or dependency is not installed", ) def test_gpt_assistant_existing_no_instructions(): """ Test function to check if the GPTAssistantAgent can retrieve instructions for an existing assistant even if the assistant was created with no instructions initially. """ instructions = "This is a test #1" assistant = GPTAssistantAgent( "assistant", instructions=instructions, llm_config={ "config_list": config_list, }, ) assistant_id = assistant.assistant_id # create a new assistant with the same ID but no instructions assistant = GPTAssistantAgent( "assistant", llm_config={ "config_list": config_list, "assistant_id": assistant_id, }, ) instruction_match = assistant.get_assistant_instructions() == instructions assistant.delete_assistant() assert instruction_match is True if __name__ == "__main__": test_gpt_assistant_chat() test_get_assistant_instructions() test_gpt_assistant_instructions_overwrite() test_gpt_assistant_existing_no_instructions()