from autogen import ConversableAgent, UserProxyAgent, config_list_from_json def main(): # Load LLM inference endpoints from an env variable or a file # See https://microsoft.github.io/autogen/docs/FAQ#set-your-api-endpoints # and OAI_CONFIG_LIST_sample. # For example, if you have created a OAI_CONFIG_LIST file in the current working directory, that file will be used. config_list = config_list_from_json(env_or_file="OAI_CONFIG_LIST") # Create the agent that uses the LLM. assistant = ConversableAgent("agent", llm_config={"config_list": config_list}) # Create the agent that represents the user in the conversation. user_proxy = UserProxyAgent("user", code_execution_config=False) # Let the assistant start the conversation. It will end when the user types exit. assistant.initiate_chat(user_proxy, message="How can I help you today?") if __name__ == "__main__": main()