# Installation ## Python FLAML requires **Python version >= 3.7**. It can be installed from pip: ```bash pip install flaml ``` or conda: ``` conda install flaml -c conda-forge ``` ### Optional Dependencies #### Notebook To run the [notebook examples](https://github.com/microsoft/FLAML/tree/main/notebook), install flaml with the [notebook] option: ```bash pip install flaml[notebook] ``` #### Extra learners * catboost ```bash pip install flaml[catboost] ``` * vowpal wabbit ```bash pip install flaml[vw] ``` * time series forecaster: prophet, statsmodels ```bash pip install flaml[forecast] ``` * natural language processing: transformers ```bash pip install flaml[nlp] ``` #### Distributed tuning * ray ```bash pip install flaml[ray] ``` * nni ```bash pip install flaml[nni] ``` * blendsearch ```bash pip install flaml[blendsearch] ``` #### Test and Benchmark * test ```bash pip install flaml[test] ``` * benchmark ```bash pip install flaml[benchmark] ``` ## .NET FLAML has a .NET implementation in [ML.NET](http://dot.net/ml), an open-source, cross-platform machine learning framework for .NET. You can use FLAML in .NET in the following ways: **Low-code** - [*Model Builder*](https://dotnet.microsoft.com/apps/machinelearning-ai/ml-dotnet/model-builder) - A Visual Studio extension for training ML models using FLAML. For more information on how to install the, see the [install Model Builder](https://docs.microsoft.com/dotnet/machine-learning/how-to-guides/install-model-builder?tabs=visual-studio-2022) guide. - [*ML.NET CLI*](https://docs.microsoft.com/dotnet/machine-learning/automate-training-with-cli) - A dotnet CLI tool for training machine learning models using FLAML on Windows, MacOS, and Linux. For more information on how to install the ML.NET CLI, see the [install the ML.NET CLI](https://docs.microsoft.com/dotnet/machine-learning/how-to-guides/install-ml-net-cli?tabs=windows) guide. **Code-first** - [*Microsoft.ML.AutoML*](https://www.nuget.org/packages/Microsoft.ML.AutoML/0.20.0-preview.22313.1) - NuGet package that provides direct access to the FLAML AutoML APIs that power low-code solutions like Model Builder and the ML.NET CLI. For more information on installing NuGet packages, see the install and use a NuGet package in [Visual Studio](https://docs.microsoft.com/nuget/quickstart/install-and-use-a-package-in-visual-studio) or [dotnet CLI](https://docs.microsoft.com/nuget/quickstart/install-and-use-a-package-using-the-dotnet-cli) guides. To get started with the ML.NET API and AutoML, see the [csharp-notebooks](https://github.com/dotnet/csharp-notebooks#machine-learning).