from flaml import tune n_trials = 0 def evaluate_config(config): global n_trials n_trials += 1 if n_trials >= 10: return None metric = (round(config["x"]) - 85000) ** 2 - config["x"] / config["y"] return metric def test_eval_stop(): analysis = tune.run( evaluate_config, config={ "x": tune.qloguniform(lower=1, upper=100000, q=1), "y": tune.qlograndint(lower=2, upper=100000, q=2), }, num_samples=100, mode="max", ) assert len(analysis.trials) == 10