import os try: from transformers import Seq2SeqTrainer except ImportError: Seq2SeqTrainer = object class TrainerForAuto(Seq2SeqTrainer): def predict( self, test_dataset, ignore_keys=None, metric_key_prefix=None, max_length=None, num_beams=None, ): if getattr(self, "_is_seq2seq", None): return super().predict( test_dataset, ignore_keys, metric_key_prefix, max_length, num_beams, ) else: return super(Seq2SeqTrainer, self).predict( test_dataset, ignore_keys, metric_key_prefix ) def prediction_step( self, model, inputs, prediction_loss_only, ignore_keys, ): if getattr(self, "_is_seq2seq", None): return super().prediction_step( model, inputs, prediction_loss_only, ignore_keys ) else: return super(Seq2SeqTrainer, self).prediction_step( model, inputs, prediction_loss_only, ignore_keys ) def evaluate( self, eval_dataset=None, ignore_keys=None, metric_key_prefix="eval", ): """Overriding transformers.Trainer.evaluate by saving metrics and checkpoint path.""" from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR ckpt_dir = os.path.join( self.args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}" ) eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset # TODO: if your task is seq2seq (i.e., SUMMARIZATION), uncomment the code below (add indentation before metrics = eval_dataset... if getattr(self, "_is_seq2seq", None): metrics = eval_dataset and super().evaluate( eval_dataset, ignore_keys, metric_key_prefix, max_length=self.args.generation_max_length, num_beams=self.args.generation_num_beams, ) else: metrics = eval_dataset and super(Seq2SeqTrainer, self).evaluate( eval_dataset, ignore_keys, metric_key_prefix, ) # if metrics: # for key in list(metrics.keys()): # if key.startswith("eval_"): # metrics[key[5:]] = metrics.pop(key) if hasattr(self, "ckpt_to_global_step"): self.ckpt_to_global_step[ckpt_dir] = self.state.global_step if metrics: self.ckpt_to_metric[ckpt_dir] = metrics else: self.ckpt_to_global_step = {ckpt_dir: self.state.global_step} self.ckpt_to_metric = {ckpt_dir: metrics} if metrics else {} return metrics # TODO: if your task is SUMMARIZATION, you need a different # class Seq2SeqTrainerForAuto, uncomment the code below # Note: I have implemented it here, # but I don't know whether it's correct, you need to debug # Seq2SeqTrainerForAuto to make sure it's correct # class Seq2SeqTrainerForAuto(TrainerForAuto): # def evaluate(self, eval_dataset=None, ignore_keys=None, metric_key_prefix="eval"): # """Overriding transformers.Trainer.evaluate by saving metrics and checkpoint path""" # self._is_seq2seq = True # TrainerForAuto.evaluate(self, eval_dataset, ignore_keys, metric_key_prefix) # # super(TrainerForAuto, self).evaluate( # # eval_dataset, ignore_keys, metric_key_prefix # # ) # TODO: if your task is QUESTIONANSWERING, uncomment the code below # by adapting the code in https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/trainer_qa.py#L28 # class QATrainerForAuto(TrainerForAuto): # pass # TODO: if your task is QUESTIONANSWERING, do the post processing here