# This file is copied from NNI project # https://github.com/microsoft/nni/blob/master/examples/trials/mnist-tfv1/mnist.py """ A deep MNIST classifier using convolutional layers. This file is a modification of the official pytorch mnist example: https://github.com/pytorch/examples/blob/master/mnist/main.py """ import os import argparse import logging import nni import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from nni.utils import merge_parameter from torchvision import datasets, transforms logger = logging.getLogger('mnist_AutoML') class Net(nn.Module): def __init__(self, hidden_size): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5, 1) self.conv2 = nn.Conv2d(20, 50, 5, 1) self.fc1 = nn.Linear(4*4*50, hidden_size) self.fc2 = nn.Linear(hidden_size, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2, 2) x = x.view(-1, 4*4*50) x = F.relu(self.fc1(x)) x = self.fc2(x) return F.log_softmax(x, dim=1) def train(args, model, device, train_loader, optimizer, epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): if (args['batch_num'] is not None) and batch_idx >= args['batch_num']: break data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() if batch_idx % args['log_interval'] == 0: logger.info('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) def test(args, model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) # sum up batch loss test_loss += F.nll_loss(output, target, reduction='sum').item() # get the index of the max log-probability pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) accuracy = 100. * correct / len(test_loader.dataset) logger.info('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), accuracy)) return accuracy def main(args): use_cuda = not args['no_cuda'] and torch.cuda.is_available() torch.manual_seed(args['seed']) device = torch.device("cuda" if use_cuda else "cpu") kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} data_dir = args['data_dir'] train_loader = torch.utils.data.DataLoader( datasets.MNIST(data_dir, train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=args['batch_size'], shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader( datasets.MNIST(data_dir, train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=1000, shuffle=True, **kwargs) hidden_size = args['hidden_size'] model = Net(hidden_size=hidden_size).to(device) optimizer = optim.SGD(model.parameters(), lr=args['lr'], momentum=args['momentum']) for epoch in range(1, args['epochs'] + 1): train(args, model, device, train_loader, optimizer, epoch) test_acc = test(args, model, device, test_loader) # report intermediate result nni.report_intermediate_result(test_acc) logger.debug('test accuracy %g', test_acc) logger.debug('Pipe send intermediate result done.') # report final result nni.report_final_result(test_acc) logger.debug('Final result is %g', test_acc) logger.debug('Send final result done.') def get_params(): # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument("--data_dir", type=str, default='./data', help="data directory") parser.add_argument('--batch_size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') parser.add_argument("--batch_num", type=int, default=None) parser.add_argument("--hidden_size", type=int, default=512, metavar='N', help='hidden layer size (default: 512)') parser.add_argument('--lr', type=float, default=0.01, metavar='LR', help='learning rate (default: 0.01)') parser.add_argument('--momentum', type=float, default=0.5, metavar='M', help='SGD momentum (default: 0.5)') parser.add_argument('--epochs', type=int, default=10, metavar='N', help='number of epochs to train (default: 10)') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--no_cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--log_interval', type=int, default=1000, metavar='N', help='how many batches to wait before logging training status') args, _ = parser.parse_known_args() return args if __name__ == '__main__': try: # get parameters form tuner tuner_params = nni.get_next_parameter() logger.debug(tuner_params) params = vars(merge_parameter(get_params(), tuner_params)) print(params) main(params) except Exception as exception: logger.exception(exception) raise