{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "This notebook uses the Huggingface transformers library to finetune a transformer model.\n", "\n", "**Requirements.** This notebook has additional requirements:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "!pip install torch transformers datasets ipywidgets" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Tokenizer" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "from transformers import AutoTokenizer" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "MODEL_CHECKPOINT = \"distilbert-base-uncased\"" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "tokenizer = AutoTokenizer.from_pretrained(MODEL_CHECKPOINT, use_fast=True)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'input_ids': [101, 2023, 2003, 1037, 3231, 102], 'attention_mask': [1, 1, 1, 1, 1, 1]}" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tokenizer(\"this is a test\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Data" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "TASK = \"cola\"" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import datasets" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Reusing dataset glue (/home/amin/.cache/huggingface/datasets/glue/cola/1.0.0/7c99657241149a24692c402a5c3f34d4c9f1df5ac2e4c3759fadea38f6cb29c4)\n", "/home/amin/miniconda/lib/python3.7/site-packages/torch/cuda/__init__.py:52: UserWarning: CUDA initialization: Found no NVIDIA driver on your system. Please check that you have an NVIDIA GPU and installed a driver from http://www.nvidia.com/Download/index.aspx (Triggered internally at /pytorch/c10/cuda/CUDAFunctions.cpp:100.)\n", " return torch._C._cuda_getDeviceCount() > 0\n" ] } ], "source": [ "raw_dataset = datasets.load_dataset(\"glue\", TASK)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# define tokenization function used to process data\n", "COLUMN_NAME = \"sentence\"\n", "def tokenize(examples):\n", " return tokenizer(examples[COLUMN_NAME], truncation=True)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5bd7b23a478043eaaf6e14e119143fcd", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, max=9.0), HTML(value='')))" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d7b648c2dbdc4fb9907e43da7db8af9a", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "36a9d6e62dbe462d94b1769f36fbd0f3", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\n" ] } ], "source": [ "encoded_dataset = raw_dataset.map(tokenize, batched=True)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n", " 'idx': 0,\n", " 'input_ids': [101,\n", " 2256,\n", " 2814,\n", " 2180,\n", " 1005,\n", " 1056,\n", " 4965,\n", " 2023,\n", " 4106,\n", " 1010,\n", " 2292,\n", " 2894,\n", " 1996,\n", " 2279,\n", " 2028,\n", " 2057,\n", " 16599,\n", " 1012,\n", " 102],\n", " 'label': 1,\n", " 'sentence': \"Our friends won't buy this analysis, let alone the next one we propose.\"}" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "encoded_dataset[\"train\"][0]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Model" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "from transformers import AutoModelForSequenceClassification" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "35b76e51b5c8406fae416fcdc3dd885e", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=0.0, description='Downloading', max=267967963.0, style=ProgressStyle(descri…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertForSequenceClassification: ['vocab_transform.weight', 'vocab_transform.bias', 'vocab_layer_norm.weight', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias']\n", "- This IS expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPretraining model).\n", "- This IS NOT expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n", "Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['pre_classifier.weight', 'pre_classifier.bias', 'classifier.weight', 'classifier.bias']\n", "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" ] } ], "source": [ "NUM_LABELS = 2\n", "model = AutoModelForSequenceClassification.from_pretrained(MODEL_CHECKPOINT, num_labels=NUM_LABELS)" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "DistilBertForSequenceClassification(\n", " (distilbert): DistilBertModel(\n", " (embeddings): Embeddings(\n", " (word_embeddings): Embedding(30522, 768, padding_idx=0)\n", " (position_embeddings): Embedding(512, 768)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (transformer): Transformer(\n", " (layer): ModuleList(\n", " (0): TransformerBlock(\n", " (attention): MultiHeadSelfAttention(\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " (q_lin): Linear(in_features=768, out_features=768, bias=True)\n", " (k_lin): Linear(in_features=768, out_features=768, bias=True)\n", " (v_lin): Linear(in_features=768, out_features=768, bias=True)\n", " (out_lin): Linear(in_features=768, out_features=768, bias=True)\n", " )\n", " (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (ffn): FFN(\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " (lin1): Linear(in_features=768, out_features=3072, bias=True)\n", " (lin2): Linear(in_features=3072, out_features=768, bias=True)\n", " )\n", " (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " )\n", " (1): TransformerBlock(\n", " (attention): MultiHeadSelfAttention(\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " (q_lin): Linear(in_features=768, out_features=768, bias=True)\n", " (k_lin): Linear(in_features=768, out_features=768, bias=True)\n", " (v_lin): Linear(in_features=768, out_features=768, bias=True)\n", " (out_lin): Linear(in_features=768, out_features=768, bias=True)\n", " )\n", " (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (ffn): FFN(\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " (lin1): Linear(in_features=768, out_features=3072, bias=True)\n", " (lin2): Linear(in_features=3072, out_features=768, bias=True)\n", " )\n", " (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " )\n", " (2): TransformerBlock(\n", " (attention): MultiHeadSelfAttention(\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " (q_lin): Linear(in_features=768, out_features=768, bias=True)\n", " (k_lin): Linear(in_features=768, out_features=768, bias=True)\n", " (v_lin): Linear(in_features=768, out_features=768, bias=True)\n", " (out_lin): Linear(in_features=768, out_features=768, bias=True)\n", " )\n", " (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (ffn): FFN(\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " (lin1): Linear(in_features=768, out_features=3072, bias=True)\n", " (lin2): Linear(in_features=3072, out_features=768, bias=True)\n", " )\n", " (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " )\n", " (3): TransformerBlock(\n", " (attention): MultiHeadSelfAttention(\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " (q_lin): Linear(in_features=768, out_features=768, bias=True)\n", " (k_lin): Linear(in_features=768, out_features=768, bias=True)\n", " (v_lin): Linear(in_features=768, out_features=768, bias=True)\n", " (out_lin): Linear(in_features=768, out_features=768, bias=True)\n", " )\n", " (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (ffn): FFN(\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " (lin1): Linear(in_features=768, out_features=3072, bias=True)\n", " (lin2): Linear(in_features=3072, out_features=768, bias=True)\n", " )\n", " (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " )\n", " (4): TransformerBlock(\n", " (attention): MultiHeadSelfAttention(\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " (q_lin): Linear(in_features=768, out_features=768, bias=True)\n", " (k_lin): Linear(in_features=768, out_features=768, bias=True)\n", " (v_lin): Linear(in_features=768, out_features=768, bias=True)\n", " (out_lin): Linear(in_features=768, out_features=768, bias=True)\n", " )\n", " (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (ffn): FFN(\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " (lin1): Linear(in_features=768, out_features=3072, bias=True)\n", " (lin2): Linear(in_features=3072, out_features=768, bias=True)\n", " )\n", " (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " )\n", " (5): TransformerBlock(\n", " (attention): MultiHeadSelfAttention(\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " (q_lin): Linear(in_features=768, out_features=768, bias=True)\n", " (k_lin): Linear(in_features=768, out_features=768, bias=True)\n", " (v_lin): Linear(in_features=768, out_features=768, bias=True)\n", " (out_lin): Linear(in_features=768, out_features=768, bias=True)\n", " )\n", " (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (ffn): FFN(\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " (lin1): Linear(in_features=768, out_features=3072, bias=True)\n", " (lin2): Linear(in_features=3072, out_features=768, bias=True)\n", " )\n", " (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " )\n", " )\n", " )\n", " )\n", " (pre_classifier): Linear(in_features=768, out_features=768, bias=True)\n", " (classifier): Linear(in_features=768, out_features=2, bias=True)\n", " (dropout): Dropout(p=0.2, inplace=False)\n", ")" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Metric" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "metric = datasets.load_metric(\"glue\", TASK)" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Metric(name: \"glue\", features: {'predictions': Value(dtype='int64', id=None), 'references': Value(dtype='int64', id=None)}, usage: \"\"\"\n", "Compute GLUE evaluation metric associated to each GLUE dataset.\n", "Args:\n", " predictions: list of translations to score.\n", " Each translation should be tokenized into a list of tokens.\n", " references: list of lists of references for each translation.\n", " Each reference should be tokenized into a list of tokens.\n", "Returns: depending on the GLUE subset, one or several of:\n", " \"accuracy\": Accuracy\n", " \"f1\": F1\n", " \"pearson\": Pearson Correlation\n", " \"spearmanr\": Spearman Correlation\n", " \"matthews_correlation\": Matthew Correlation\n", "\"\"\", stored examples: 0)" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "metric" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "def compute_metrics(eval_pred):\n", " predictions, labels = eval_pred\n", " predictions = np.argmax(predictions, axis=1)\n", " return metric.compute(predictions=predictions, references=labels)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Training (aka Finetuning)" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "from transformers import Trainer\n", "from transformers import TrainingArguments" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "args = TrainingArguments(\n", " output_dir='output',\n", " do_eval=True,\n", " )" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "trainer = Trainer(\n", " model=model,\n", " args=args,\n", " train_dataset=encoded_dataset[\"train\"],\n", " eval_dataset=encoded_dataset[\"validation\"],\n", " tokenizer=tokenizer,\n", " compute_metrics=compute_metrics,\n", ")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
Step | \n", "Training Loss | \n", "
---|
"
],
"text/plain": [
"