import os try: from transformers import Trainer as TFTrainer except ImportError: TFTrainer = object class TrainerForAuto(TFTrainer): def evaluate(self, eval_dataset=None, ignore_keys=None, metric_key_prefix="eval"): """Overriding transformers.Trainer.evaluate by saving metrics and checkpoint path""" from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR ckpt_dir = os.path.join( self.args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}" ) eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset metrics = eval_dataset and super().evaluate( eval_dataset, ignore_keys, metric_key_prefix ) if metrics: for key in list(metrics.keys()): if key.startswith("eval_"): metrics[key[5:]] = metrics.pop(key) if hasattr(self, "ckpt_to_global_step"): self.ckpt_to_global_step[ckpt_dir] = self.state.global_step if metrics: self.ckpt_to_metric[ckpt_dir] = metrics else: self.ckpt_to_global_step = {ckpt_dir: self.state.global_step} self.ckpt_to_metric = {ckpt_dir: metrics} if metrics else {}