def test_classification_head(): from flaml import AutoML from datasets import load_dataset train_dataset = load_dataset("emotion", split="train[:1%]").to_pandas().iloc[0:10] dev_dataset = load_dataset("emotion", split="train[1%:2%]").to_pandas().iloc[0:10] custom_sent_keys = ["text"] label_key = "label" X_train = train_dataset[custom_sent_keys] y_train = train_dataset[label_key] X_val = dev_dataset[custom_sent_keys] y_val = dev_dataset[label_key] automl = AutoML() automl_settings = { "gpu_per_trial": 0, "max_iter": 3, "time_budget": 5, "task": "seq-classification", "metric": "accuracy", } automl_settings["custom_hpo_args"] = { "model_path": "google/electra-small-discriminator", "output_dir": "test/data/output/", "ckpt_per_epoch": 5, "fp16": False, } automl.fit( X_train=X_train, y_train=y_train, X_val=X_val, y_val=y_val, **automl_settings )