try: import openai skip = False except ImportError: skip = True import pytest import sys from autogen import ConversableAgent, config_list_from_json from autogen.agentchat.contrib.teachable_agent import TeachableAgent try: from termcolor import colored except ImportError: def colored(x, *args, **kwargs): return x # Set verbosity levels to maximize code coverage. qa_verbosity = 0 # 0 for basic info, 1 to add memory operations, 2 for analyzer messages, 3 for memo lists. skill_verbosity = 3 # 0 for basic info, 1 to add memory operations, 2 for analyzer messages, 3 for memo lists. assert_on_error = False # GPT-4 nearly always succeeds on these unit tests, but GPT-3.5 is a bit less reliable. recall_threshold = 1.5 # Higher numbers allow more (but less relevant) memos to be recalled. use_cache = False # If True, cached LLM calls will be skipped and responses pulled from cache. False exposes LLM non-determinism. # Specify the model to use by uncommenting one of the following lines. # filter_dict={"model": ["gpt-4-0613"]} # filter_dict={"model": ["gpt-3.5-turbo-0613"]} # filter_dict={"model": ["gpt-4"]} filter_dict = {"model": ["gpt-35-turbo-16k", "gpt-3.5-turbo-16k"]} def create_teachable_agent(reset_db=False, verbosity=0): """Instantiates a TeachableAgent using the settings from the top of this file.""" # Load LLM inference endpoints from an env variable or a file # See https://microsoft.github.io/autogen/docs/FAQ#set-your-api-endpoints # and OAI_CONFIG_LIST_sample config_list = config_list_from_json(env_or_file="OAI_CONFIG_LIST", filter_dict=filter_dict) teachable_agent = TeachableAgent( name="teachableagent", llm_config={"config_list": config_list, "request_timeout": 120, "use_cache": use_cache}, teach_config={ "verbosity": verbosity, "reset_db": reset_db, "path_to_db_dir": "./tmp/teachable_agent_db", "recall_threshold": recall_threshold, }, ) return teachable_agent def check_agent_response(teachable_agent, user, correct_answer): """Checks whether the agent's response contains the correct answer, and returns the number of errors (1 or 0).""" agent_response = user.last_message(teachable_agent)["content"] if correct_answer not in agent_response: print(colored(f"\nTEST FAILED: EXPECTED ANSWER {correct_answer} NOT FOUND IN AGENT RESPONSE", "light_red")) if assert_on_error: assert correct_answer in agent_response return 1 else: print(colored(f"\nTEST PASSED: EXPECTED ANSWER {correct_answer} FOUND IN AGENT RESPONSE", "light_cyan")) return 0 def use_question_answer_phrasing(): """Tests whether the teachable agent can answer a question after being taught the answer in a previous chat.""" print(colored("\nTEST QUESTION-ANSWER PHRASING", "light_cyan")) num_errors, num_tests = 0, 0 teachable_agent = create_teachable_agent( reset_db=True, verbosity=qa_verbosity ) # For a clean test, clear the agent's memory. user = ConversableAgent("user", max_consecutive_auto_reply=0, llm_config=False, human_input_mode="NEVER") # Prepopulate memory with a few arbitrary memos, just to make retrieval less trivial. teachable_agent.prepopulate_db() # Ask the teachable agent to do something using terminology it doesn't understand. user.initiate_chat(recipient=teachable_agent, message="What is the twist of 5 and 7?") # Explain the terminology to the teachable agent. user.send( recipient=teachable_agent, message="Actually, the twist of two or more numbers is their product minus their sum. Try again.", ) num_errors += check_agent_response(teachable_agent, user, "23") num_tests += 1 # Let the teachable agent remember things that should be learned from this chat. teachable_agent.learn_from_user_feedback() # Now start a new chat to clear the context, and require the teachable agent to use its new knowledge. print(colored("\nSTARTING A NEW CHAT WITH EMPTY CONTEXT", "light_cyan")) user.initiate_chat(recipient=teachable_agent, message="What's the twist of 8 and 3 and 2?") num_errors += check_agent_response(teachable_agent, user, "35") num_tests += 1 # Wrap up. teachable_agent.close_db() return num_errors, num_tests def use_task_advice_pair_phrasing(): """Tests whether the teachable agent can demonstrate a new skill after being taught a task-advice pair in a previous chat.""" print(colored("\nTEST TASK-ADVICE PHRASING", "light_cyan")) num_errors, num_tests = 0, 0 teachable_agent = create_teachable_agent( reset_db=True, verbosity=skill_verbosity # For a clean test, clear the teachable agent's memory. ) user = ConversableAgent("user", max_consecutive_auto_reply=0, llm_config=False, human_input_mode="NEVER") # Prepopulate memory with a few arbitrary memos, just to make retrieval less trivial. teachable_agent.prepopulate_db() # Ask the teachable agent to do something, and provide some helpful advice. user.initiate_chat( recipient=teachable_agent, message="Compute the twist of 5 and 7. Here's a hint: The twist of two or more numbers is their product minus their sum.", ) num_errors += check_agent_response(teachable_agent, user, "23") num_tests += 1 # Let the teachable agent remember things that should be learned from this chat. teachable_agent.learn_from_user_feedback() # Now start a new chat to clear the context, and require the teachable agent to use its new knowledge. print(colored("\nSTARTING A NEW CHAT WITH EMPTY CONTEXT", "light_cyan")) user.initiate_chat(recipient=teachable_agent, message="Please calculate the twist of 8 and 3 and 2.") num_errors += check_agent_response(teachable_agent, user, "35") num_tests += 1 # Wrap up. teachable_agent.close_db() return num_errors, num_tests @pytest.mark.skipif( skip or not sys.version.startswith("3.9"), reason="do not run if openai is not installed or py!=3.9", ) def test_all(): """Runs this file's unit tests.""" total_num_errors, total_num_tests = 0, 0 num_trials = 1 # Set to a higher number to get a more accurate error rate. for trial in range(num_trials): num_errors, num_tests = use_question_answer_phrasing() total_num_errors += num_errors total_num_tests += num_tests num_errors, num_tests = use_task_advice_pair_phrasing() total_num_errors += num_errors total_num_tests += num_tests print(colored(f"\nTRIAL {trial + 1} OF {num_trials} FINISHED", "light_cyan")) if total_num_errors == 0: print(colored("\nTEACHABLE AGENT TESTS FINISHED WITH ZERO ERRORS", "light_cyan")) else: print( colored( f"\nTEACHABLE AGENT TESTS FINISHED WITH {total_num_errors} / {total_num_tests} TOTAL ERRORS ({100.0 * total_num_errors / total_num_tests}%)", "light_red", ) ) if __name__ == "__main__": """Runs this file's unit tests from the command line.""" test_all()