import setuptools import os here = os.path.abspath(os.path.dirname(__file__)) with open("README.md", "r", encoding="UTF-8") as fh: long_description = fh.read() # Get the code version version = {} with open(os.path.join(here, "flaml/version.py")) as fp: exec(fp.read(), version) __version__ = version["__version__"] install_requires = [ "NumPy>=1.16.2", "lightgbm>=2.3.1", "xgboost>=0.90,<=1.3.3", "scipy>=1.4.1", "pandas>=1.1.4", "scikit-learn>=0.24", ] setuptools.setup( name="FLAML", version=__version__, author="Microsoft Corporation", author_email="hpo@microsoft.com", description="A fast library for automated machine learning and tuning", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/microsoft/FLAML", packages=setuptools.find_packages(include=["flaml*"]), install_requires=install_requires, extras_require={ "notebook": [ "openml==0.10.2", "jupyter", "matplotlib", "rgf-python", "catboost>=0.26", ], "test": [ "flake8>=3.8.4", "pytest>=6.1.1", "coverage>=5.3", "pre-commit", "catboost>=0.26", "rgf-python", "optuna==2.8.0", "vowpalwabbit", "openml", "statsmodels>=0.12.2", "psutil==5.8.0", "dataclasses", "transformers>=4.14", "datasets", "torch", "nltk", "rouge_score", "hcrystalball==0.1.10", "seqeval", ], "catboost": ["catboost>=0.26"], "blendsearch": ["optuna==2.8.0"], "ray": [ "ray[tune]==1.6.0", "pyyaml<5.3.1", ], "azureml": [ "azureml-mlflow", ], "nni": [ "nni", ], "vw": [ "vowpalwabbit", ], "nlp": [ "transformers>=4.14", "datasets", "torch", "seqeval", "nltk", "rouge_score", ], "ts_forecast": ["prophet>=1.0.1", "statsmodels>=0.12.2", "hcrystalball==0.1.10"], "forecast": ["prophet>=1.0.1", "statsmodels>=0.12.2", "hcrystalball==0.1.10"], "benchmark": ["catboost>=0.26", "psutil==5.8.0", "xgboost==1.3.3"], }, classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires=">=3.6", )