import lightgbm as lgb import numpy as np from sklearn.datasets import load_breast_cancer from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from flaml import tune from flaml.automl.model import LGBMEstimator from flaml.tune.spark.utils import check_spark import os import pytest spark_available, _ = check_spark() skip_spark = not spark_available pytestmark = pytest.mark.skipif( skip_spark, reason="Spark is not installed. Skip all spark tests." ) os.environ["FLAML_MAX_CONCURRENT"] = "2" X, y = load_breast_cancer(return_X_y=True) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25) def train_breast_cancer(config): params = LGBMEstimator(**config).params train_set = lgb.Dataset(X_train, label=y_train) gbm = lgb.train(params, train_set) preds = gbm.predict(X_test) pred_labels = np.rint(preds) result = { "mean_accuracy": accuracy_score(y_test, pred_labels), } return result def test_tune_spark(): flaml_lgbm_search_space = LGBMEstimator.search_space(X_train.shape) config_search_space = { hp: space["domain"] for hp, space in flaml_lgbm_search_space.items() } analysis = tune.run( train_breast_cancer, metric="mean_accuracy", mode="max", config=config_search_space, num_samples=-1, time_budget_s=5, use_spark=True, verbose=3, ) # print("Best hyperparameters found were: ", analysis.best_config) print("The best trial's result: ", analysis.best_trial.last_result) if __name__ == "__main__": test_tune_spark()