from flaml import AutoML from flaml.data import load_openml_dataset def _test_lexiflow(): X_train, X_test, y_train, y_test = load_openml_dataset( dataset_id=179, data_dir="test/data" ) lexico_objectives = {} lexico_objectives["metrics"] = ["val_loss", "pred_time"] lexico_objectives["tolerances"] = {"val_loss": 0.01, "pred_time": 0.0} lexico_objectives["targets"] = {"val_loss": 0.0, "pred_time": 0.0} lexico_objectives["modes"] = ["min", "min"] automl = AutoML() settings = { "time_budget": 100, "lexico_objectives": lexico_objectives, "estimator_list": ["xgboost"], "use_ray": True, "task": "classification", "max_iter": 10000000, "train_time_limit": 60, "verbose": 0, "eval_method": "holdout", "mem_thres": 128 * (1024**3), "seed": 1, } automl.fit(X_train=X_train, y_train=y_train, X_val=X_test, y_val=y_test, **settings) print(automl.predict(X_train)) print(automl.model) print(automl.config_history) print(automl.best_iteration) print(automl.best_estimator) if __name__ == "__main__": _test_lexiflow()