# AAAI 2023 Lab Forum - LSHP2: Automated Machine Learning & Tuning with FLAML ## Session Information **Date and Time**: February 8, 2023 at 2-6pm ET. Location: Walter E. Washington Convention Center, Washington DC, USA Duration: 4 hours (3.5 hours + 0.5 hour break) For the most up-to-date information, see the [AAAI'23 Program Agenda](https://aaai.org/Conferences/AAAI-23/aaai23tutorials/) ## [Lab Forum Slides](https://1drv.ms/b/s!Ao3suATqM7n7iokCQbF7jUUYwOqGqQ?e=cMnilV) ## What Will You Learn? - What FLAML is and how to use FLAML to - find accurate ML models with low computational resources for common ML tasks - tune hyperparameters generically - How to leverage the flexible and rich customization choices - finish the last mile for deployment - create new applications - Code examples, demos, use cases - Research & development opportunities ## Session Agenda ### **Part 1. Overview of FLAML** - Overview of AutoML and FLAML - Basic usages of FLAML - Task-oriented AutoML - [Documentation](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML) - [Notebook: A classification task with AutoML](https://github.com/microsoft/FLAML/blob/tutorial-aaai23/notebook/automl_classification.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial-aaai23/notebook/automl_classification.ipynb) - Tune User-Defined-functions with FLAML - [Documentation](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function) - [Notebook: Tune user-defined function](https://github.com/microsoft/FLAML/blob/tutorial-aaai23/notebook/tune_demo.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial-aaai23/notebook/tune_demo.ipynb) - Zero-shot AutoML - [Documentation](https://microsoft.github.io/FLAML/docs/Use-Cases/Zero-Shot-AutoML) - [Notebook: Zeroshot AutoML](https://github.com/microsoft/FLAML/blob/tutorial-aaai23/notebook/zeroshot_lightgbm.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial-aaai23/notebook/zeroshot_lightgbm.ipynb) - [ML.NET demo](https://learn.microsoft.com/dotnet/machine-learning/tutorials/predict-prices-with-model-builder) Break (15m) ### **Part 2. Deep Dive into FLAML** - The Science Behind FLAML’s Success - [Economical hyperparameter optimization methods in FLAML](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function/#hyperparameter-optimization-algorithm) - [Other research in FLAML](https://microsoft.github.io/FLAML/docs/Research) - Maximize the Power of FLAML through Customization and Advanced Functionalities - [Notebook: Customize your AutoML with FLAML](https://github.com/microsoft/FLAML/blob/tutorial-aaai23/notebook/customize_your_automl_with_flaml.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial-aaai23/notebook/customize_your_automl_with_flaml.ipynb) - [Notebook: Further acceleration of AutoML with FLAML](https://github.com/microsoft/FLAML/blob/tutorial-aaai23/notebook/further_acceleration_of_automl_with_flaml.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial-aaai23/notebook/further_acceleration_of_automl_with_flaml.ipynb) - [Notebook: Neural network model tuning with FLAML ](https://github.com/microsoft/FLAML/blob/tutorial-aaai23/notebook/tune_pytorch.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial-aaai23/notebook/tune_pytorch.ipynb) ### **Part 3. New features in FLAML** - Natural language processing - [Notebook: AutoML for NLP tasks](https://github.com/microsoft/FLAML/blob/tutorial-aaai23/notebook/automl_nlp.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial-aaai23/notebook/automl_nlp.ipynb) - Time Series Forecasting - [Notebook: AutoML for Time Series Forecast tasks](https://github.com/microsoft/FLAML/blob/tutorial-aaai23/notebook/automl_time_series_forecast.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial-aaai23/notebook/automl_time_series_forecast.ipynb) - Targeted Hyperparameter Optimization With Lexicographic Objectives - [Documentation](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function/#lexicographic-objectives) - [Notebook: Find accurate and fast neural networks with lexicographic objectives](https://github.com/microsoft/FLAML/blob/tutorial-aaai23/notebook/tune_lexicographic.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial-aaai23/notebook/tune_lexicographic.ipynb) - Online AutoML - [Notebook: Online AutoML with Vowpal Wabbit](https://github.com/microsoft/FLAML/blob/tutorial-aaai23/notebook/autovw.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial-aaai23/notebook/autovw.ipynb) - Fair AutoML ### Challenges and open problems