# KDD 2022 Hands-on Tutorial - Automated Machine Learning & Tuning with FLAML ## Session Information Date: August 16, 2022 Time: 9:30 AM ET Location: 101 Duration: 3 hours For the most up-to-date information, see the [SIGKDD'22 Program Agenda](https://kdd.org/kdd2022/handsOnTutorial.html) ## [Tutorial Slides](https://1drv.ms/b/s!Ao3suATqM7n7ioQF8xT8BbRdyIf_Ww?e=qQysIf) ## What Will You Learn? - What FLAML is and how to use it to find accurate ML models with low computational resources for common machine learning tasks - How to leverage the flexible and rich customization choices to: - Finish the last mile for deployment - Create new applications - Code examples, demos, and use cases - Research & development opportunities ## Session Agenda ### Part 1 - Overview of AutoML and FLAML - Task-oriented AutoML with FLAML - [Notebook: A classification task with AutoML](https://github.com/microsoft/FLAML/blob/tutorial/notebook/automl_classification.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial/notebook/automl_classification.ipynb) - [Notebook: A regression task with AuotML using LightGBM as the learner](https://github.com/microsoft/FLAML/blob/tutorial/notebook/automl_lightgbm.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial/notebook/automl_lightgbm.ipynb) - [ML.NET demo](https://docs.microsoft.com/dotnet/machine-learning/tutorials/predict-prices-with-model-builder) - Tune user defined functions with FLAML - [Notebook: Basic tuning procedures and advanced tuning options](https://github.com/microsoft/FLAML/blob/tutorial/notebook/tune_demo.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial/notebook/tune_demo.ipynb) - [Notebook: Tune pytorch](https://github.com/microsoft/FLAML/blob/tutorial/notebook/tune_pytorch.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial/notebook/tune_pytorch.ipynb) - Q & A ### Part 2 - Zero-shot AutoML - [Notebook: Zeroshot AutoML](https://github.com/microsoft/FLAML/blob/tutorial/notebook/zeroshot_lightgbm.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial/notebook/zeroshot_lightgbm.ipynb) - Time series forecasting - [Notebook: AutoML for Time Series Forecast tasks](https://github.com/microsoft/FLAML/blob/tutorial/notebook/automl_time_series_forecast.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial/notebook/automl_time_series_forecast.ipynb) - Natural language processing - [Notebook: AutoML for NLP tasks](https://github.com/microsoft/FLAML/blob/tutorial/notebook/automl_nlp.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial/notebook/automl_nlp.ipynb) - Online AutoML - [Notebook: Online AutoML with Vowpal Wabbit](https://github.com/microsoft/FLAML/blob/tutorial/notebook/autovw.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial/notebook/autovw.ipynb) - Fair AutoML - Challenges and open problems